Endothelial progenitor cells mobilization after maximal exercise according to heart failure severity

被引:10
|
作者
Kourek, Christos [1 ]
Karatzanos, Eleftherios [1 ]
Psarra, Katherina [2 ]
Georgiopoulos, Georgios [3 ]
Delis, Dimitrios [1 ]
Linardatou, Vasiliki [1 ]
Gavrielatos, Gerasimos [4 ]
Papadopoulos, Costas [5 ]
Nanas, Serafim [1 ]
Dimopoulos, Stavros [6 ]
机构
[1] Evaggelismos Hosp, Dept Clin Ergospirometry, Exercise & Rehabil Lab, Athens 10676, Greece
[2] Evaggelismos Hosp, Immunol & Histocompatibil Dept, Athens 10676, Greece
[3] Alexandra Hosp, Dept Clin Therapeut, Athens 11528, Greece
[4] Tzaneio Gen Hosp Piraeus, Dept Cardiol, Piraeus 18536, Greece
[5] Korgialenio Benakio Red Cross Hosp, Cardiol Dept 2, Athens 11526, Greece
[6] Onassis Cardiac Surg Ctr, Cardiac Surg Intens Care Unit, 356 L Syggrou, Athens 17674, Greece
来源
WORLD JOURNAL OF CARDIOLOGY | 2020年 / 12卷 / 11期
关键词
Chronic heart failure; Endothelial progenitor cells; Circulating endothelial cells; Maximal exercise; Cardiopulmonary exercise testing; Severity; DYSFUNCTION; INTERVAL;
D O I
10.4330/wjc.v12.i11.526
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Vascular endothelial dysfunction is an underlying pathophysiological feature of chronic heart failure (CHF). Patients with CHF are characterized by impaired vasodilation and inflammation of the vascular endothelium. They also have low levels of endothelial progenitor cells (EPCs). EPCs are bone marrow derived cells involved in endothelium regeneration, homeostasis, and neovascularization. Exercise has been shown to improve vasodilation and stimulate the mobilization of EPCs in healthy people and patients with cardiovascular comorbidities. However, the effects of exercise on EPCs in different stages of CHF remain under investigation. AIM To evaluate the effect of a symptom-limited maximal cardiopulmonary exercise testing (CPET) on EPCs in CHF patients of different severity. METHODS Forty-nine consecutive patients (41 males) with stable CHF [mean age (years): 56 +/- 10, ejection fraction (EF, %): 32 +/- 8, peak oxygen uptake (VO2, mL/kg/min): 18.1 +/- 4.4] underwent a CPET on a cycle ergometer. Venous blood was sampled before and after CPET. Five circulating endothelial populations were quantified by flow cytometry: Three subgroups of EPCs [CD34(+)/CD45(-)/CD133(+), CD34(+)/CD45(-)/CD133(+)/VEGFR(2) and CD34(+)/CD133(+)/vascular endothelial growth factor receptor 2 (VEGFR(2))] and two subgroups of circulating endothelial cells (CD34(+)/CD45(-)/CD133(-) and CD34(+)/CD45(-)/CD133(-)/VEGFR(2)). Patients were divided in two groups of severity according to the median value of peak VO2 (18.0 mL/kg/min), predicted peak VO2 (65.5%), ventilation/carbon dioxide output slope (32.5) and EF (reduced and mid-ranged EF). EPCs values are expressed as median (25th-75th percentiles) in cells/10(6) enucleated cells. RESULTS Patients with lower peak VO2 increased the mobilization of CD34(+)/CD45(-)/CD133(+) [pre CPET: 60 (25-76) vs post CPET: 90 (70-103) cells/10(6) enucleated cells, P < 0.001], CD34(+)/CD45(-)/CD133(+)/VEGFR(2) [pre CPET: 1 (1-4) vs post CPET: 5 (3-8) cells/10(6) enucleated cells, P < 0.001], CD34(+)/CD45(-)/CD133(-) [pre CPET: 186 (141-361) vs post CPET: 488 (247-658) cells/10(6) enucleated cells, P < 0.001] and CD34(+)/CD45(-)/CD133(-)/VEGFR(2) [pre CPET: 2 (1-2) vs post CPET: 3 (2-5) cells/10(6) enucleated cells, P < 0.001], while patients with higher VO2 increased the mobilization of CD34(+)/CD45(-)/CD133(+) [pre CPET: 42 (19-73) vs post CPET: 90 (39-118) cells/10(6) enucleated cells, P < 0.001], CD34(+)/CD45(-)/CD133(+)/VEGFR(2) [pre CPET: 2 (1-3) vs post CPET: 6 (3-9) cells/10(6) enucleated cells, P < 0.001], CD34(+)/CD133(+)/VEGFR(2) [pre CPET: 10 (7-18) vs post CPET: 14 (10-19) cells/10(6) enucleated cells, P < 0.01], CD34(+)/CD45(-)/CD133(-) [pre CPET: 218 (158-247) vs post CPET: 311 (254-569) cells/10(6) enucleated cells, P < 0.001] and CD34(+)/CD45(-)/CD133(-)/VEGFR(2) [pre CPET: 1 (1-2) vs post CPET: 4 (2-6) cells/10(6) enucleated cells, P < 0.001]. A similar increase in the mobilization of at least four out of five cellular populations was observed after maximal exercise within each severity group regarding predicted peak, ventilation/carbon dioxide output slope and EF as well (P < 0.05). However, there were no statistically significant differences in the mobilization of endothelial cellular populations between severity groups in each comparison (P > 0.05). CONCLUSION Our study has shown an increased EPCs and circulating endothelial cells mobilization after maximal exercise in CHF patients, but this increase was not associated with syndrome severity. Further investigation, however, is needed.
引用
收藏
页码:526 / 539
页数:14
相关论文
共 50 条
  • [21] Endothelial progenitor cell mobilization after percutaneous coronary intervention
    Banerjee, Subhash
    Brilakis, Emmanouil
    Zhang, Shuqi
    Roesle, Michele
    Lindsey, Jason
    Philips, Binu
    Blewett, Christopher G.
    Terada, Lance S.
    ATHEROSCLEROSIS, 2006, 189 (01) : 70 - 75
  • [22] Attenuated Microcirculatory Response to Maximal Exercise in Patients With Chronic Heart Failure
    Tzanis, Georgios
    Manetos, Christos
    Dimopoulos, Stavros
    Vasileiadis, Ioannis
    Malliaras, Kostas
    Kaldara, Elisabeth
    Karatzanos, Eleftherios
    Nanas, Serafim
    JOURNAL OF CARDIOPULMONARY REHABILITATION AND PREVENTION, 2016, 36 (01) : 33 - 37
  • [23] Mobilization of endothelial progenitor cells after endovascular interventions in patients with type 2 diabetes mellitus
    Michurova, M. S.
    Kalashnikov, V. Y.
    Smirnov, O. M.
    Ivanova, O. N.
    Terekhin, S. A.
    DIABETES MELLITUS, 2014, 17 (04): : 35 - 42
  • [24] Endothelial progenitor cells as markers of severity in hypertrophic cardiomyopathy
    Kalyva, Athanasia
    Marketou, Maria E.
    Parthenakis, Fragiskos I.
    Pontikoglou, Charalampos
    Kontaraki, Joanna E.
    Maragkoudakis, Spyros
    Petousis, Stylianos
    Chlouverakis, Gregory
    Papadaki, Helen A.
    Vardas, Panos E.
    EUROPEAN JOURNAL OF HEART FAILURE, 2016, 18 (02) : 179 - 184
  • [25] Positive effect of eplerenone treatment on endothelial progenitor cells in patients with chronic heart failure
    Jung, Christian
    Florvaag, Anna
    Oberle, Volker
    Fritzenwanger, Michael
    Kretschmar, Daniel
    Kuethe, Friedhelm
    Betge, Stefan
    Goebel, Bjoern
    Franz, Marcus
    Barz, Dagmar
    Ferrari, Markus
    Figulla, Hans R.
    JOURNAL OF THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM, 2012, 13 (03) : 401 - 406
  • [26] Potential role of endothelial progenitor cells in the pathophysiology of heart failure: Clinical implications and perspectives
    Andreou, Ioannis
    Tousoulis, Dimitris
    Tentolouris, Costas
    Antoniades, Charalambos
    Stefanadis, Christodoulos
    ATHEROSCLEROSIS, 2006, 189 (02) : 247 - 254
  • [27] Testosterone deficiency in male heart failure patients and its effect on endothelial progenitor cells
    Florvaag, Anna
    Oberle, Volker
    Fritzenwanger, Michael
    Kretschmar, Daniel
    Betge, Stefan
    Goebel, Bjoern
    Barz, Dagmar
    Ferrari, Markus
    Figulla, Hans R.
    Franz, Marcus
    Jung, Christian
    AGING MALE, 2012, 15 (03) : 180 - 186
  • [28] The impact of different forms of exercise on endothelial progenitor cells in healthy populations
    Ferentinos, Panagiotis
    Tsakirides, Costas
    Swainson, Michelle
    Davison, Adam
    Martyn-St James, Marrissa
    Ispoglou, Theocharis
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2022, 122 (07) : 1589 - 1625
  • [29] Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients
    Liu Qiang
    Li Hong
    Wang Ningfu
    Chen Huaihong
    Wang Jing
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 168 (03) : 2082 - 2088
  • [30] Role of Endothelial Progenitor Cell Mobilization After Percutaneous Angioplasty Procedure
    Barsotti, M. C.
    Di Stefano, R.
    Spontoni, P.
    Chimenti, D.
    Balbarini, A.
    CURRENT PHARMACEUTICAL DESIGN, 2009, 15 (10) : 1107 - 1122