Thermal Conductivity of Graphene Laminate

被引:279
作者
Malekpour, H. [1 ]
Chang, K. -H. [2 ]
Chen, J. -C. [2 ]
Lu, C. -Y. [2 ]
Nika, D. L. [1 ,3 ]
Novoselov, K. S. [4 ]
Balandin, A. A. [1 ]
机构
[1] Univ Calif Riverside, Phonon Optimized Engn Mat POEM Ctr, Riverside, CA 92521 USA
[2] Bluestone Global Tech, Wappingers Falls, NY 12590 USA
[3] Moldova State Univ, Dept Phys & Engn, MD-2009 Kishinev, Moldova
[4] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England
基金
美国国家科学基金会;
关键词
Graphene laminate; thermal conductivity; optothermal technique; SINGLE-LAYER GRAPHENE; NANOCOMPOSITES; TRANSPORT; SIZE;
D O I
10.1021/nl501996v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 mu m. The thermal conductivity of graphene laminate was found to be in the range from 40 to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. Coating plastic materials with thin graphene laminate films that have up to 600x higher thermal conductivity than plastics may have important practical implications.
引用
收藏
页码:5155 / 5161
页数:7
相关论文
共 27 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Nanoplatelet Size to Control the Alignment and Thermal Conductivity in Copper-Graphite Composites [J].
Boden, Andre ;
Boerner, Benji ;
Kusch, Patryk ;
Firkowska, Izabela ;
Reich, Stephanie .
NANO LETTERS, 2014, 14 (06) :3640-3644
[4]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[5]  
Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
[6]   Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments [J].
Chen, Shanshan ;
Moore, Arden L. ;
Cai, Weiwei ;
Suk, Ji Won ;
An, Jinho ;
Mishra, Columbia ;
Amos, Charles ;
Magnuson, Carl W. ;
Kang, Junyong ;
Shi, Li ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (01) :321-328
[7]   Graphene-based Composite Thin Films for Electronics [J].
Eda, Goki ;
Chhowalla, Manish .
NANO LETTERS, 2009, 9 (02) :814-818
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]  
Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]
[10]   Thermal Properties of Graphene-Copper-Graphene Heterogeneous Films [J].
Goli, Pradyumna ;
Ning, Hao ;
Li, Xuesong ;
Lu, Ching Yu ;
Novoselov, Konstantin S. ;
Balandin, Alexander A. .
NANO LETTERS, 2014, 14 (03) :1497-1503