Methane reforming over a high temperature stable-NiCoMgOx supported on zirconia-hafnia catalyst

被引:23
作者
Choudhary, V. R. [1 ]
Mondal, K. C. [1 ]
Choudhary, T. V. [1 ]
机构
[1] Natl Chem Lab, Chem Engn & Proc Dev Div, Pune 411008, Maharashtra, India
关键词
methane; partial oxidation; oxy-steam reforming; oxy-dry reforming; high temperature stable catalyst;
D O I
10.1016/j.cej.2006.05.007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The unusually high temperature stable NiCoMgOx (Ni/Co/Mg: 1:0.2:1.2)/zirconia-hafnia catalyst has been investigated for syngas generation via the catalytic partial oxidation of methane (CPOM), oxidative steam reforming of methane (OSRM) and oxidative CO2 reforming of methane (OCRM) processes. The catalyst, even when calcined at 1400 degrees C for 4 h, showed excellent activity/selectivity for the CPOM, OSRM and the OCRM reactions. On account of its high thermal stability, hot spots in the catalyst bed and/or high temperatures prevailing at the catalyst surface during the oxy-reforming processes would have little or no effect on the catalytic activity/selectivity of the NiCoMgOx/zirconia-hafnia catalyst, thus making the catalyst suitable even for operating under adiabatic conditions. While the selectivity for CO increased considerably with increasing reaction temperature for the CPOM process, the selectivity for H-2 was affected to a much lesser extent. The selectivity for CO and H-2 in the CPOM reaction was found to decrease with increasing space velocity; the H-2 selectivity was however affected to a greater extent. For the OSRM process, the H2O/CH4 ratio profoundly influenced the H-2/CO ratio and the heat of the reaction. Depending on the H2O/CH4 ratio, the OSRM process could be operated in a mildly exothermic, thermoneutral or mildly endothermic mode. The CO2 conversion increased rapidly with increasing OCRM temperature and correspondingly the exothermicity of the OCRM reaction was found to decrease with increasing reaction temperature. At 900 degrees C, the OCRM reaction was mildly exothermic and provided high methane conversion and syngas selectivity. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 77
页数:5
相关论文
共 15 条
[1]   PARTIAL OXIDATION OF METHANE TO SYNTHESIS GAS-USING CARBON-DIOXIDE [J].
ASHCROFT, AT ;
CHEETHAM, AK ;
GREEN, MLH ;
VERNON, PDF .
NATURE, 1991, 352 (6332) :225-226
[2]   CATALYTIC PARTIAL OXIDATION OF NATURAL-GAS TO SYNGAS [J].
BHARADWAJ, SS ;
SCHMIDT, LD .
FUEL PROCESSING TECHNOLOGY, 1995, 42 (2-3) :109-127
[3]  
BURKE BF, 2001, NPRA 2001 ANN M AM 0
[4]   NIO/CAO-CATALYZED FORMATION OF SYNGAS BY COUPLED EXOTHERMIC OXIDATIVE CONVERSION AND ENDOTHERMIC CO2 AND STEAM REFORMING OF METHANE [J].
CHOUDHARY, VR ;
RAJPUT, AM ;
PRABHAKAR, B .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1994, 33 (20) :2104-2106
[5]   Partial oxidation of methane to syngas with or without simultaneous steam or CO2 reforming over a high-temperature stable-NiCoMgCeOx supported on zirconia-hafnia catalyst [J].
Choudhary, VR ;
Mondal, KC ;
Choudhary, TV .
APPLIED CATALYSIS A-GENERAL, 2006, 306 :45-50
[6]   Simultaneous steam and CO2 reforming of methane to syngas over NiO/MgO/SA-5205 in presence and absence of oxygen [J].
Choudhary, VR ;
Uphade, BS ;
Mamman, AS .
APPLIED CATALYSIS A-GENERAL, 1998, 168 (01) :33-46
[7]   Oxidative conversion of methane to syngas over nickel supported on commercial low surface area porous catalyst carriers precoated with alkaline and rare earth oxides [J].
Choudhary, VR ;
Uphade, BS ;
Mamman, AS .
JOURNAL OF CATALYSIS, 1997, 172 (02) :281-293
[8]   High-temperature stable and highly active/selective supported NiCoMgCeOx catalyst suitable for autothermal reforming of methane to syngas [J].
Choudhary, VR ;
Mondal, KC ;
Mamman, AS .
JOURNAL OF CATALYSIS, 2005, 233 (01) :36-40
[9]   ENERGY-EFFICIENT METHANE-TO-SYNGAS CONVERSION WITH LOW H-2/CO RATIO BY SIMULTANEOUS CATALYTIC REACTIONS OF METHANE WITH CARBON-DIOXIDE AND OXYGEN [J].
CHOUDHARY, VR ;
RAJPUT, AM ;
PRABHAKAR, B .
CATALYSIS LETTERS, 1995, 32 (3-4) :391-396
[10]   Combustion of dilute propane over transition metal-doped ZrO2 (cubic) catalysts [J].
Choudhary, VR ;
Banerjee, S ;
Pataskar, SG .
APPLIED CATALYSIS A-GENERAL, 2003, 253 (01) :65-74