Multidimensional folding for sinusoidal order selection

被引:1
作者
Liu, Kefei [1 ]
Huang, Lei [2 ]
So, Hing Cheung [3 ]
Ye, Jieping [1 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Sinusoidal order selection; Harmonic retrieval; Multidimensional folding (MDF); Estimation error (ESTER); Shift invariance equality; HARMONIC RETRIEVAL; PARAMETER-ESTIMATION; SUBSPACE TECHNIQUES; MODEL; NOISE; SIGNALS; NUMBER; DECOMPOSITION; ENUMERATION; ESPRIT;
D O I
10.1016/j.dsp.2015.10.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Estimation of the number of harmonics in multidimensional sinusoids is studied in this paper. The ESTimation ERror (ESTER) is a subspace based detection approach that is robust against colored noise. However, the number of signals it can detect is very limited. To improve the identifiability, we propose to combine the multidimensional folding (MDF) techniques with ESTER for multidimensional sinusoidal order selection. Our algorithm development is inspired by the shift invariance properties of the two matrix slices resulting from multidimensional folding and unfolding, which have been exploited to extract the spatial frequencies in the literature. The maximum identifiable number of signals of the MDF-ESTER is of the order of magnitude of product of the lengths of all spatial dimensions with uniform spacing, which is significantly larger than that of the conventional multidimensional ESTER methods. Meanwhile, it inherits the robustness of the ESTER against colored noise, and performs comparably to state-of-the-art schemes when the number of signals is small. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:349 / 360
页数:12
相关论文
共 44 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   A new perturbation analysis for signal enumeration in rotational invariance techniques [J].
Badeau, R ;
David, B ;
Richard, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (02) :450-458
[3]  
Badeau R, 2004, INT CONF ACOUST SPEE, P1025
[4]   TWO-DIMENSIONAL NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY [J].
BAX, A ;
LERNER, L .
SCIENCE, 1986, 232 (4753) :960-967
[5]   Subspace approach for two-dimensional parameter estimation of multiple damped sinusoids [J].
Chan, Frankie K. W. ;
So, H. C. ;
Sun, Weize .
SIGNAL PROCESSING, 2012, 92 (09) :2172-2179
[6]   Multidimensional prewhitening for enhanced signal reconstruction and parameter estimation in colored noise with Kronecker correlation structure [J].
da Costa, Joao Paulo C. L. ;
Liu, Kefei ;
So, Hing Cheung ;
Schwarz, Stefanie ;
Haardt, Martin ;
Roemer, Florian .
SIGNAL PROCESSING, 2013, 93 (11) :3209-3226
[7]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[8]   MULTIPLE SOURCE LOCATION - A MATRIX DECOMPOSITION APPROACH [J].
DI, AH .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (05) :1086-1091
[9]  
Haardt A. R. M., 2004, HIGHRESOLUTION ROBUS, P255
[10]   Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems [J].
Haardt, M ;
Nossek, JA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (01) :161-169