PANOPTIC SEGMENTATION USING MULTISPECTRAL WORLDVIEW-3 IMAGES IN BEACH AREAS

被引:0
作者
de Carvalho, Osmar L. F. [1 ]
de Carvalho, Osmar A., Jr. [2 ]
de Albuquerque, Anesmar O. [2 ]
Luiz, Argelica S. [2 ]
Santana, Nickolas C. [2 ]
Borges, Dibio L. [1 ]
机构
[1] Univ Brasilia, Dept Comp Sci, Brasilia, DF, Brazil
[2] Univ Brasilia, Dept Geog, Brasilia, DF, Brazil
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
segmentation; deep learning; high-resolution images;
D O I
10.1109/IGARSS46834.2022.9883920
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Panoptic segmentation combines instance and semantic segmentation, enabling the classification of objects and backgrounds. It is still a method little explored in the remote sensing field, mostly due to the difficulty of generating the data. Moreover, the beach areas have great interest due to many objects and elements that may guide public policies. In this regard, we propose the first study on beach areas using panoptic segmentation and the first panoptic segmentation study using multispectral data. We used the Gram-Schmidt pan-sharpening method for the multispectral bands and created a dataset with 850 samples with 128x128 dimensions in the COCO panoptic annotation format. To evaluate the dataset, the Panoptic-FPN was used with modifications in the input (changing from three to eight channels). Results show 59.43 Panoptic Quality (PQ), 77.96 Segmentation Quality (SQ), and 75.07 Recognition Quality (RQ).
引用
收藏
页码:167 / 170
页数:4
相关论文
共 13 条
[1]   Instance segmentation of center pivot irrigation systems using multi-temporal SENTINEL-1 SAR images [J].
Albuquerque, Anesmar Olino de ;
Carvalho, Osmar Luiz Ferreira de ;
Silva, Cristiano Rosa e ;
Bem, Pablo Pozzobon de ;
Gomes, Roberto Arnaldo Trancoso ;
Borges, Dibio Leandro ;
Guimaraes, Renato Fontes ;
Pimentel, Concepta Margaret McManus ;
Junior, Osmar Abilio de Carvalho .
REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 23
[2]   COCO-Stuff: Thing and Stuff Classes in Context [J].
Caesar, Holger ;
Uijlings, Jasper ;
Ferrari, Vittorio .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1209-1218
[3]   Instance Segmentation for Large, Multi-Channel Remote Sensing Imagery Using Mask-RCNN and a Mosaicking Approach [J].
Carvalho, Osmar Luiz Ferreira de ;
de Carvalho Junior, Osmar Abilio ;
Albuquerque, Anesmar Olino de ;
Bem, Pablo Pozzobon de ;
Silva, Cristiano Rosa ;
Ferreira, Pedro Henrique Guimaraes ;
Moura, Rebeca dos Santos de ;
Gomes, Roberto Arnaldo Trancoso ;
Guimaraes, Renato Fontes ;
Borges, Dibio Leandro .
REMOTE SENSING, 2021, 13 (01) :1-24
[4]   Dealing With Clouds and Seasonal Changes for Center Pivot Irrigation Systems Detection Using Instance Segmentation in Sentinel-2 Time Series [J].
de Albuquerque, Anesmar Olino ;
Ferreira de Carvalho, Osmar Luiz ;
e Silva, Cristiano Rosa ;
Luiz, Argelica Saiaka ;
de Bem, Pablo P. ;
Trancoso Gomes, Roberto Arnaldo ;
Guimaraes, Renato Fontes ;
de Carvalho Junior, Osmar Abilio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :8447-8457
[5]  
de Carvalho O. L. F., 2021, PANOPTIC SEGMENTATIO
[6]   Rethinking Panoptic Segmentation in Remote Sensing: A Hybrid Approach Using Semantic Segmentation and Non-Learning Methods [J].
de Carvalho, Osmar L. F. ;
de Carvalho Junior, Osmar A. ;
de Albuquerque, Anesmar O. ;
Santana, Nickolas C. ;
Borges, Dibio L. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[7]   Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks [J].
Garnot, Vivien Sainte Fare ;
Landrieu, Loic .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :4852-4861
[8]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Cascaded panoptic segmentation method for high resolution remote sensing image [J].
Hua, Xia ;
Wang, Xinqing ;
Rui, Ting ;
Shao, Faming ;
Wang, Dong .
APPLIED SOFT COMPUTING, 2021, 109