SELF-IMPROVEMENT OF POINTWISE HARDY INEQUALITY

被引:3
作者
Eriksson-Bique, Sylvester [1 ]
Vahakangas, Antti V. [2 ]
机构
[1] UCLA, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
关键词
Self-improvement; pointwise Hardy inequality; uniform fatness; metric space;
D O I
10.1090/tran/7826
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the self-improvement of a pointwise p-Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves.
引用
收藏
页码:2235 / 2250
页数:16
相关论文
共 17 条
[1]  
Bjorn Anders, 2011, EMS TRACTS MATH, V17
[2]   Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces [J].
Björn, J ;
MacManus, P ;
Shanmugalingam, N .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1) :339-369
[3]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[4]  
Eriksson-Bique S., 2016, ANN ACAD SCI FENN MA
[5]  
Folland G.B., 1984, Real Analysis Modern Techniques and Their Applications
[6]   Pointwise Hardy inequalities [J].
Hajlasz, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :417-423
[7]   The Poincare inequality is an open ended condition [J].
Keith, Stephen ;
Zhong, Xiao .
ANNALS OF MATHEMATICS, 2008, 167 (02) :575-599
[8]  
Kinnunen J, 1997, MATH RES LETT, V4, P489
[9]  
Kinnunen J, 2010, INT MAT SER, V11, P239, DOI 10.1007/978-1-4419-1341-8_10
[10]   The equivalence between pointwise Hardy inequalities and uniform fatness [J].
Korte, Riikka ;
Lehrback, Juha ;
Tuominen, Heli .
MATHEMATISCHE ANNALEN, 2011, 351 (03) :711-731