Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations

被引:146
作者
Rodenas, A. [1 ]
Torchia, G. A. [2 ,3 ]
Lifante, G. [1 ]
Cantelar, E. [1 ]
Lamela, J. [1 ]
Jaque, F. [1 ]
Roso, L. [3 ]
Jaque, D. [1 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Mat, E-28049 Madrid, Spain
[2] Consejo Nacl Invest Cient & Tecn, CIC, CIOp, RA-1900 La Plata, Argentina
[3] Univ Salamanca, Fac Ciencias, Grp Opt, E-37008 Salamanca, Spain
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2009年 / 95卷 / 01期
关键词
ND-YAG; FABRICATION; SILICA; GLASS; PROFILES; CRYSTALS;
D O I
10.1007/s00340-008-3353-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The effect that femtosecond laser filamentation has on the refractive index of Nd:YAG ceramics, and which leads to the formation of waveguide lasers, has been studied by micro-spectroscopy imaging, beam propagation experiments and calculations. From the analysis of the Nd3+ luminescence and Raman images, two main types of laser induced modifications have been found to contribute to the refractive-index change: (i) a lattice defect contribution localized along the self-focusing volume of the laser pulses, in which lattice damage causes a refractive-index decrease, and (ii) a lattice strain-field contribution around and inside the filaments, in which the pressure-driven variation of the inter-atomic distances causes refractive-index variations. Scanning near-field optical-transmission and end-coupling experiments, in combination with beam propagation calculations, have been used to quantitatively determine the corresponding contribution of each effect to the refractive-index field of double-filament waveguides. Results indicate that the strain-field induced refractive-index increment is the main mechanism leading to waveguiding, whereas the damage-induced refractive-index reduction at filaments leads to a stronger mode confinement.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 52 条
[1]   Origins of waveguiding in femtosecond laser-structured LiNbO3 [J].
Burghoff, J. ;
Nolte, S. ;
Tuennermann, A. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 89 (01) :127-132
[2]   Waveguides in lithium niobate fabricated by focused ultrashort laser pulses [J].
Burghoff, Jonas ;
Grebing, Christian ;
Nolte, Stefan ;
Tuennermann, Andreas .
APPLIED SURFACE SCIENCE, 2007, 253 (19) :7899-7902
[3]   Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate [J].
Burghoff, Jonas ;
Grebing, Christian ;
Nolte, Stefan ;
Tuennermann, Andreas .
APPLIED PHYSICS LETTERS, 2006, 89 (08)
[4]   Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing [J].
Cheng, Y ;
Sugioka, K ;
Midorikawa, K .
OPTICS LETTERS, 2004, 29 (17) :2007-2009
[5]   Writing waveguides in glass with a femtosecond laser [J].
Davis, KM ;
Miura, K ;
Sugimoto, N ;
Hirao, K .
OPTICS LETTERS, 1996, 21 (21) :1729-1731
[6]   LASER-INDUCED BREAKDOWN BY IMPACT IONIZATION IN SIO2 WITH PULSE WIDTHS FROM 7 NS TO 150 FS [J].
DU, D ;
LIU, X ;
KORN, G ;
SQUIER, J ;
MOUROU, G .
APPLIED PHYSICS LETTERS, 1994, 64 (23) :3071-3073
[7]   ION-IMPLANTED ND-YAG WAVE-GUIDE LASERS [J].
FIELD, SJ ;
HANNA, DC ;
SHEPHERD, DP ;
TROPPER, AC ;
CHANDLER, PJ ;
TOWNSEND, PD ;
ZHANG, L .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (03) :428-433
[8]   GENERATION OF OPTICAL PULSES SHORTER THAN 0.1 PSEC BY COLLIDING PULSE MODE-LOCKING [J].
FORK, RL ;
GREENE, BI ;
SHANK, CV .
APPLIED PHYSICS LETTERS, 1981, 38 (09) :671-672
[9]   Three-dimensional optical storage inside transparent materials [J].
Glezer, EN ;
Milosavljevic, M ;
Huang, L ;
Finlay, RJ ;
Her, TH ;
Callan, JP ;
Mazur, E .
OPTICS LETTERS, 1996, 21 (24) :2023-2025
[10]   Transmission electron microscopy studies of femtosecond laser induced modifications in quartz [J].
Gorelik, T ;
Will, M ;
Nolte, S ;
Tuennermann, A ;
Glatzel, U .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 76 (03) :309-311