Convex relaxations of chance constrained optimization problems

被引:33
作者
Ahmed, Shabbir [1 ]
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Chance constraints; Convex optimization; Bounds; PROGRAMS;
D O I
10.1007/s11590-013-0624-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we develop convex relaxations of chance constrained optimization problems in order to obtain lower bounds on the optimal value. Unlike existing statistical lower bounding techniques, our approach is designed to provide deterministic lower bounds. We show that a version of the proposed scheme leads to a tractable convex relaxation when the chance constraint function is affine with respect to the underlying random vector and the random vector has independent components. We also propose an iterative improvement scheme for refining the bounds.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 10 条
[1]  
[Anonymous], MOS SIAM SERIES OPTI
[2]  
Aringhieri R., 2004, Journal of the ACM, V5, P1
[3]   Uncertain convex programs: randomized solutions and confidence levels [J].
Calafiore, G ;
Campi, MC .
MATHEMATICAL PROGRAMMING, 2005, 102 (01) :25-46
[4]  
Iwamura K., 1996, Journal of Information & Optimization Sciences, V17, P409
[5]   A SAMPLE APPROXIMATION APPROACH FOR OPTIMIZATION WITH PROBABILISTIC CONSTRAINTS [J].
Luedtke, James ;
Ahmed, Shabbir .
SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (02) :674-699
[6]  
Luedtke J, 2007, LECT NOTES COMPUT SC, V4513, P410
[7]   Convex approximations of chance constrained programs [J].
Nemirovski, Arkadi ;
Shapiro, Alexander .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (04) :969-996
[8]   Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications [J].
Pagnoncelli, B. K. ;
Ahmed, S. ;
Shapiro, A. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 142 (02) :399-416
[9]  
Pinter J., 1989, ZOR, Methods and Models of Operations Research, V33, P219, DOI 10.1007/BF01423332
[10]  
Prekopa A., 1995, Stochastic Programming