Artificial neural networks and genetic algorithm used to optimize process parameters of hydrotalcite

被引:0
作者
Ren, QL [1 ]
Luo, Q [1 ]
He, B [1 ]
Luo, L [1 ]
Jiting, L [1 ]
机构
[1] Xian Jiaotong Univ, Xian 710049, Peoples R China
来源
8TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, VOLS 1-3, PROCEEDING | 2001年
关键词
artificial neural networks; genetic algorithm; process parameters optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The effect of reaction time, the mole rate of Mg-2 to Al3+, sodium carbonate adding amount on the output of hydrotalcite were studied by using artificial neural networks. The optimum process parameters were optimized with genetic algorithm,
引用
收藏
页码:127 / 130
页数:4
相关论文
共 7 条
[1]  
BUFANG F, 1999, J GUANGXI CHEM IND, V28, P29
[2]  
CATHERINE H, 2000, MATER LETT, V46, P160
[3]   New nested adaptive neural networks (NANN) for constitutive modeling [J].
Ghaboussi, J ;
Sidarta, DE .
COMPUTERS AND GEOTECHNICS, 1998, 22 (01) :29-52
[4]  
MIRSA C, 1990, Patent No. 4904457
[5]   An information theoretic approach for combining neural network process models [J].
Sridhar, DV ;
Bartlett, EB ;
Seagrave, RC .
NEURAL NETWORKS, 1999, 12 (06) :915-926
[6]   Inferential estimation of polymer quality using bootstrap aggregated neural networks [J].
Zhang, J .
NEURAL NETWORKS, 1999, 12 (06) :927-938
[7]  
ZHONG ZS, 1993, NEURAL CALCULATION