Bigraded equivariant cohomology of real quadrics

被引:5
作者
dos Santos, Pedro F. [1 ]
Lima-Filho, Paulo [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Bredon cohomology; Real quadrics; Geometrically cellular varieties; Galois group action; Descent spectral sequence; Associated Borel theory; ALGEBRAIC CYCLES;
D O I
10.1016/j.aim.2009.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete description of the bigraded Bredon cohomology ring of smooth projective real quadrics, with coefficients in the constant Mackey functor Z. These invariants are closely related to the integral motivic cohomology ring, which is not known for these varieties. Some of the results and techniques introduced can be applied to other geometrically cellular real varieties. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1247 / 1280
页数:34
相关论文
共 23 条
[1]  
[Anonymous], 1998, Ergeb. Math. Grenzgeb.
[2]  
[Anonymous], 1999, ALGEBRAIC K THEORY
[3]   K-THEORY AND REALITY [J].
ATIYAH, MF .
QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (68) :367-&
[4]  
Bousfield A.K., 1972, Lecture Notes in Math., V304
[5]  
COSTENOBLE SR, 1992, MICH MATH J, V39, P325
[6]   Quaternionic algebraic cycles and reality [J].
Dos Santos, PF ;
Lima, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (12) :4701-4736
[7]   Algebraic cycles on real varieties and Z/2-equivariant homotopy theory [J].
dos Santos, PF .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 :513-544
[8]   Topological hypercovers and A1-realizations [J].
Dugger, D ;
Isaksen, DC .
MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (04) :667-689
[9]  
EVENS L, 1991, OXFORD MATH MONOGR
[10]  
GLEN E, 1967, B AM MATH SOC, V73, P266