Generalized synchronization of commensurate fractional-order chaotic systems: Applications in secure information transmission

被引:22
作者
Martinez-Fuentes, Oscar [1 ,2 ]
Javier Montesinos-Garcia, Juan [3 ]
Francisco Gomez-Aguilar, Jose [4 ]
机构
[1] Inst Nacl Astrofis Opt & Elect INAOE, Dept Elect, Luis Enrique Erro 1, Cholula 72840, Puebla, Mexico
[2] Univ Anahuac Veracruz, Sch Engn, Campus Xalapa,Circuito Arco Sur S-N, Xalapa 91098, Veracruz, Mexico
[3] Univ Tecnol Mixteca, Inst Electon & Mecatron, Carretera Acatlima Km 2-5, Huajuapan De Leon 69000, Oaxaca, Mexico
[4] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Nonlinear fractional-order Liouvillian systems; Generalized synchronization (GS); Chaotic systems; Caputo derivative; Riemann-Liouville integral; Data encryption; SIGNALS;
D O I
10.1016/j.dsp.2022.103494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a class of chaotic nonlinear fractional systems of commensurate order called Liouvillian systems is considered to solve the problem of generalized synchronization. To solve this problem, the master and the slave systems are expressed in the Fractional Generalized Observability Canonical Form (FGOCF), then a fractional-order dynamical control law is designed to achieve the generalized synchronization. The encryption of color images is presented as an application to the proposed synchronization method, the encryption algorithm allows to decrypt data without loss. The synchronization and its applications are then illustrated with numerical examples. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 58 条
[11]  
Daftardar-Gejji V., 2019, Fractional calculus and fractional differential equations
[12]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[13]   New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay [J].
Du, Feifei ;
Lu, Jun-Guo .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 389
[14]  
Goldreich O, 2008, COMPUTATIONAL COMPLEXITY: A CONCEPTUAL PERSPECTIVE, P1, DOI 10.1017/CBO9780511804106
[15]  
Grigoletto E.Contharteze., 2013, Appl. Math, V4, P23
[16]   Generalized framework for the design of adaptive fractional-order masks for image denoising [J].
Gupta, Anmol ;
Kumar, Sanjay .
DIGITAL SIGNAL PROCESSING, 2022, 121
[17]   Non-fragile exponential polynomial observer design for a class of nonlinear fractional-order systems with application in chaotic communication and synchronisation [J].
Hafezi, Alamdar ;
Khandani, Khosro ;
Majd, Vahid Johari .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (08) :1353-1372
[18]   CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM [J].
HARTLEY, TT ;
LORENZO, CF ;
QAMMER, HK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :485-490
[19]   A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption [J].
Jahanshahi, Hadi ;
Yousefpour, Amin ;
Munoz-Pacheco, Jesus M. ;
Kacar, Sezgin ;
Viet-Thanh Pham ;
Alsaadi, Fawaz E. .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 383
[20]   Medical Images Encryption Based on Adaptive-Robust Multi-Mode Synchronization of Chen Hyper-Chaotic Systems [J].
Javan, Ali Akbar Kekha ;
Jafari, Mahboobeh ;
Shoeibi, Afshin ;
Zare, Assef ;
Khodatars, Marjane ;
Ghassemi, Navid ;
Alizadehsani, Roohallah ;
Gorriz, Juan Manuel .
SENSORS, 2021, 21 (11)