Generalized synchronization of commensurate fractional-order chaotic systems: Applications in secure information transmission

被引:20
作者
Martinez-Fuentes, Oscar [1 ,2 ]
Javier Montesinos-Garcia, Juan [3 ]
Francisco Gomez-Aguilar, Jose [4 ]
机构
[1] Inst Nacl Astrofis Opt & Elect INAOE, Dept Elect, Luis Enrique Erro 1, Cholula 72840, Puebla, Mexico
[2] Univ Anahuac Veracruz, Sch Engn, Campus Xalapa,Circuito Arco Sur S-N, Xalapa 91098, Veracruz, Mexico
[3] Univ Tecnol Mixteca, Inst Electon & Mecatron, Carretera Acatlima Km 2-5, Huajuapan De Leon 69000, Oaxaca, Mexico
[4] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Nonlinear fractional-order Liouvillian systems; Generalized synchronization (GS); Chaotic systems; Caputo derivative; Riemann-Liouville integral; Data encryption; SIGNALS;
D O I
10.1016/j.dsp.2022.103494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a class of chaotic nonlinear fractional systems of commensurate order called Liouvillian systems is considered to solve the problem of generalized synchronization. To solve this problem, the master and the slave systems are expressed in the Fractional Generalized Observability Canonical Form (FGOCF), then a fractional-order dynamical control law is designed to achieve the generalized synchronization. The encryption of color images is presented as an application to the proposed synchronization method, the encryption algorithm allows to decrypt data without loss. The synchronization and its applications are then illustrated with numerical examples. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 58 条
  • [1] Artin E., 2015, GAMMA FUNCTION
  • [2] Azizi Tahmineh., 2020, Journal of Applied Mathematics and Physics, Scientific Research Publishing, V8, P406, DOI [DOI 10.4236/JAMP.2020.83031, 10.4236/jamp.2020.83031]
  • [3] Balanov A, 2009, SPRINGER SER SYNERG, P1
  • [4] A snail-shaped chaotic system with large bandwidth: dynamical analysis, synchronization and secure communication scheme
    Benkouider, Khaled
    Bouden, Toufik
    Yalcin, Mustak E.
    [J]. SN APPLIED SCIENCES, 2020, 2 (06):
  • [5] A SIMPLE UNPREDICTABLE PSEUDORANDOM NUMBER GENERATOR
    BLUM, L
    BLUM, M
    SHUB, M
    [J]. SIAM JOURNAL ON COMPUTING, 1986, 15 (02) : 364 - 383
  • [6] The synchronization of chaotic systems
    Boccaletti, S
    Kurths, J
    Osipov, G
    Valladares, DL
    Zhou, CS
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2): : 1 - 101
  • [7] Controlling chaos of the family of Rossler systems using sliding mode control
    Chang, Jen-Fuh
    Hung, Meei-Ling
    Yang, Yi-Sung
    Liao, Teh-Lu
    Yan, Jun-Juh
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 37 (02) : 609 - 622
  • [8] A polynomial-fuzzy-model-based synchronization methodology for the multi-scroll Chen chaotic secure communication system
    Chen, Ying-Jen
    Chou, Hao-Gong
    Wang, Wen-June
    Tsai, Shun-Hung
    Tanaka, Kazuo
    Wang, Hua O.
    Wang, Kun-Ching
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 87
  • [9] Exponential quasi-synchronization of conformable fractional-order complex dynamical networks
    Chu, Xiaoyan
    Xu, Liguang
    Hu, Hongxiao
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 140
  • [10] Design of a state observer to approximate signals by using the concept of fractional variable-order derivative
    Coronel-Escamilla, A.
    Gomez-Aguilar, J. F.
    Torres, L.
    Valtierra-Rodriguez, M.
    Escobar-Jimenez, R. F.
    [J]. DIGITAL SIGNAL PROCESSING, 2017, 69 : 127 - 139