POTENTIAL WELL AND EXACT BOUNDARY CONTROLLABILITY FOR RADIAL SEMILINEAR WAVE EQUATIONS ON SCHWARZSCHILD SPACETIME

被引:0
作者
Lai, Ning-An [1 ]
Zhao, Jinglei [2 ]
机构
[1] Lishui Univ, Coll Sci, Lishui 323000, Zhejiang, Peoples R China
[2] Lishui Univ, Coll Educ, Zhejinag 323000, Peoples R China
基金
中国国家自然科学基金;
关键词
Semilinear wave equation; Schwarzschild spacetime; exact boundary controllability; potential well; SCATTERING;
D O I
10.3934/cpaa.2014.13.1317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the exact boundary controllability for the cubic focusing semilinear wave equation on Schwarzschild black hole background in radially symmetrical case. When the initial data and the final data are in the so called potential well, we find that the sufficient condition for the global existence is also sufficient to ensure the exact boundary controllability of the problem. Moreover, under the assumption of radial symmetry, our problem is changed to one space dimension case, and then the control time can be that of the linear wave equation.
引用
收藏
页码:1317 / 1325
页数:9
相关论文
共 21 条
[1]  
CHEN G, 1979, J MATH PURE APPL, V58, P249
[2]  
Choquet-Bruhat Y., 1996, ANAL MANIFOLDS PHYS
[3]   On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials [J].
Duyckaerts, Thomas ;
Zhang, Xu ;
Zuazua, Enrique .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (01) :1-41
[4]   Exact controllability for multidimensional semilinear hyperbolic equations [J].
Fu, Xiaoyu ;
Yong, Jiongmin ;
Zhang, Xu .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (05) :1578-1614
[5]  
Guo Yuxia, 2002, [Acta Mathematicae Applicatae Sinica, Ying yung shu hseh hseh pao], V18, P589
[6]   SCATTERING THRESHOLD FOR THE FOCUSING NONLINEAR KLEIN-GORDON EQUATION [J].
Ibrahim, Slim ;
Masmoudi, Nader ;
Nakanishi, Kenji .
ANALYSIS & PDE, 2011, 4 (03) :405-460
[7]   Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation [J].
Kenig, Carlos E. ;
Merle, Frank .
ACTA MATHEMATICA, 2008, 201 (02) :147-212
[8]  
Li T., 2010, AIMS SERIES APPL MAT, V3
[9]   EXACT CONTROLLABILITY, STABILIZATION AND PERTURBATIONS FOR DISTRIBUTED SYSTEMS [J].
LIONS, JL .
SIAM REVIEW, 1988, 30 (01) :1-68
[10]  
Misner C, 1973, GRAVITATION, V3