Comparison of scalable fast methods for long-range interactions

被引:58
|
作者
Arnold, Axel [1 ]
Fahrenberger, Florian [1 ]
Holm, Christian [1 ]
Lenz, Olaf [1 ]
Bolten, Matthias [2 ]
Dachsel, Holger [3 ]
Halver, Rene [3 ]
Kabadshow, Ivo [3 ]
Gaehler, Franz [4 ]
Heber, Frederik [5 ]
Iseringhausen, Julian [5 ]
Hofmann, Michael [6 ]
Pippig, Michael [7 ]
Potts, Daniel [7 ]
Sutmann, Godehard [8 ]
机构
[1] Univ Stuttgart, Inst Computat Phys, D-70174 Stuttgart, Germany
[2] Univ Wuppertal, Dept Math & Sci, Wuppertal, Germany
[3] Forschungszentrum Julich, Inst Adv Simulat, Julich Supercomp Ctr, D-52425 Julich, Germany
[4] Univ Bielefeld, Fac Math, Bielefeld, Germany
[5] Univ Bonn, Inst Numer Simulat, Bonn, Germany
[6] Tech Univ Chemnitz, Dept Comp Sci, Chemnitz, Germany
[7] Tech Univ Chemnitz, Dept Math, Chemnitz, Germany
[8] Forschungszentrum Julich, Inst Adv Simulat, Julich Supercomp Ctr, D-52425 Julich, Germany
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
关键词
PERIODIC BOUNDARY-CONDITIONS; PARTICLE MESH EWALD; ELECTROSTATIC INTERACTIONS; COMPUTER-SIMULATIONS; MOLECULAR-DYNAMICS; LATTICE SUMS; SUMMATION; ALGORITHMS; SYSTEMS; EXTENSION;
D O I
10.1103/PhysRevE.88.063308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on a parallel scalable library for Coulomb interactions in particle systems, a comparison between the fast multipole method (FMM), multigrid-based methods, fast Fourier transform (FFT)-based methods, and a Maxwell solver is provided for the case of three-dimensional periodic boundary conditions. These methods are directly compared with respect to complexity, scalability, performance, and accuracy. To ensure comparable conditions for all methods and to cover typical applications, we tested all methods on the same set of computers using identical benchmark systems. Our findings suggest that, depending on system size and desired accuracy, the FMM- and FFT-based methods are most efficient in performance and stability.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Fast long-range interactions in the early processing of luminance-defined form
    Kohly, RP
    Regan, D
    VISION RESEARCH, 2002, 42 (01) : 49 - 63
  • [32] Long-range interactions at the HO promoter
    McBride, HJ
    Brazas, RM
    Yu, YX
    Nasmyth, K
    Stillman, DJ
    MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (05) : 2669 - 2678
  • [33] Chemisorption on substrates with long-range interactions
    Taferner, WT
    Davison, SG
    CHEMICAL PHYSICS LETTERS, 1997, 269 (1-2) : 171 - 176
  • [34] Epigenetics of Long-Range Chromatin Interactions
    Jian Qun Ling
    Andrew R Hoffman
    Pediatric Research, 2007, 61 : 11 - 16
  • [35] Long-range interactions of the chlorine atom
    Zatsarinny, O.
    Bartschat, K.
    Zhang, J. Y.
    Mitroy, J.
    MOLECULAR PHYSICS, 2009, 107 (22) : 2387 - 2393
  • [36] Long-Range Chromatin Interactions in the Kidney
    Guan, Yuting
    Liu, Hongbo
    Susztak, Katalin
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (03): : 367 - 369
  • [37] LONG-RANGE INTERACTIONS OF MERCURY ATOMS
    STWALLEY, WC
    KRAMER, HL
    JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (12): : 5555 - &
  • [38] Long-range interactions of ytterbium atoms
    Zhang, Peng
    Dalgarno, Alexander
    MOLECULAR PHYSICS, 2008, 106 (12-13) : 1525 - 1529
  • [39] Preface: Long-range interactions and synchronization
    Gupta, Shamik
    Bachelard, Romain
    da Rocha Filho, Tarcisio Marciano
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (08)
  • [40] Chemisorption on substrates with long-range interactions
    Taferner, W. T.
    Davison, S. G.
    Chemical Physics Letters, 269 (1-2):