Comparison of scalable fast methods for long-range interactions

被引:60
作者
Arnold, Axel [1 ]
Fahrenberger, Florian [1 ]
Holm, Christian [1 ]
Lenz, Olaf [1 ]
Bolten, Matthias [2 ]
Dachsel, Holger [3 ]
Halver, Rene [3 ]
Kabadshow, Ivo [3 ]
Gaehler, Franz [4 ]
Heber, Frederik [5 ]
Iseringhausen, Julian [5 ]
Hofmann, Michael [6 ]
Pippig, Michael [7 ]
Potts, Daniel [7 ]
Sutmann, Godehard [8 ]
机构
[1] Univ Stuttgart, Inst Computat Phys, D-70174 Stuttgart, Germany
[2] Univ Wuppertal, Dept Math & Sci, Wuppertal, Germany
[3] Forschungszentrum Julich, Inst Adv Simulat, Julich Supercomp Ctr, D-52425 Julich, Germany
[4] Univ Bielefeld, Fac Math, Bielefeld, Germany
[5] Univ Bonn, Inst Numer Simulat, Bonn, Germany
[6] Tech Univ Chemnitz, Dept Comp Sci, Chemnitz, Germany
[7] Tech Univ Chemnitz, Dept Math, Chemnitz, Germany
[8] Forschungszentrum Julich, Inst Adv Simulat, Julich Supercomp Ctr, D-52425 Julich, Germany
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
关键词
PERIODIC BOUNDARY-CONDITIONS; PARTICLE MESH EWALD; ELECTROSTATIC INTERACTIONS; COMPUTER-SIMULATIONS; MOLECULAR-DYNAMICS; LATTICE SUMS; SUMMATION; ALGORITHMS; SYSTEMS; EXTENSION;
D O I
10.1103/PhysRevE.88.063308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on a parallel scalable library for Coulomb interactions in particle systems, a comparison between the fast multipole method (FMM), multigrid-based methods, fast Fourier transform (FFT)-based methods, and a Maxwell solver is provided for the case of three-dimensional periodic boundary conditions. These methods are directly compared with respect to complexity, scalability, performance, and accuracy. To ensure comparable conditions for all methods and to cover typical applications, we tested all methods on the same set of computers using identical benchmark systems. Our findings suggest that, depending on system size and desired accuracy, the FMM- and FFT-based methods are most efficient in performance and stability.
引用
收藏
页数:22
相关论文
共 69 条
[1]  
[Anonymous], 2000, MULTIGRID
[2]   MMM1D: A method for calculating electrostatic interactions in one-dimensional periodic geometries [J].
Arnold, A ;
Holm, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (14)
[3]   Efficient methods to compute long-range interactions for soft matter systems [J].
Arnold, A ;
Holm, C .
ADVANCED COMPUTER SIMULATION APPROACHES FOR SOFT MATTER SCIENCES II, 2005, 185 :59-109
[4]   MMM2D: A fast and accurate summation method for electrostatic interactions in 2D slab geometries [J].
Arnold, A ;
Holm, C .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 148 (03) :327-348
[5]   How to Convert SPME to P3M: Influence Functions and Error Estimates [J].
Ballenegger, V. ;
Cerda, J. J. ;
Holm, C. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (03) :936-947
[6]   The optimal P3M algorithm for computing electrostatic energies in periodic systems [J].
Ballenegger, V. ;
Cerda, J. J. ;
Lenz, O. ;
Holm, Ch. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (03)
[7]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[8]  
Bolten M., 2008, MULTIGRID METHODS ST
[9]  
Bolten M., SCAFACOS MANUAL
[10]   P3M algorithm for dipolar interactions [J].
Cerda, Juan J. ;
Ballenegger, V. ;
Lenz, O. ;
Holm, C. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (23)