Gradient-Based Recursive Identification Methods for Input Nonlinear Equation Error Closed-Loop Systems

被引:8
作者
Shen, Bingbing [1 ]
Ding, Feng [1 ,2 ]
Alsaedi, Ahmed [2 ]
Hayat, Tasawar [2 ,3 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[3] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
基金
中国国家自然科学基金;
关键词
Parameter estimation; Stochastic gradient; Multi-innovation; Hierarchical identification; Nonlinear system; Closed-loop system; LEAST-SQUARES IDENTIFICATION; PARAMETER-ESTIMATION ALGORITHMS; AUXILIARY MODEL; HAMMERSTEIN SYSTEMS; FILTERING TECHNIQUE; DYNAMICAL-SYSTEMS; NEWTON ITERATION; FAULT-DETECTION; DELAY; CONVERGENCE;
D O I
10.1007/s00034-016-0394-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The identification problem of closed-loop or feedback nonlinear systems is a hot topic. Based on the hierarchical identification principle, this paper presents a hierarchical stochastic gradient algorithm and a hierarchical multi-innovation stochastic gradient algorithm for feedback nonlinear systems. The simulation results show that the hierarchical multi-innovation stochastic gradient can more effectively estimate the parameters of the feedback nonlinear systems than the hierarchical stochastic gradient algorithm.
引用
收藏
页码:2166 / 2183
页数:18
相关论文
共 43 条
[1]   An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems [J].
Bai, EW .
AUTOMATICA, 1998, 34 (03) :333-338
[2]   How Nonlinear Parametric Wiener System Identification is Under Gaussian Inputs? [J].
Cai, Zhijun ;
Bai, Er-Wei .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (03) :738-742
[3]   Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments [J].
Cao, Xiang ;
Zhu, Daqi ;
Yang, Simon X. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (11) :2364-2374
[4]   Observer-Based Adaptive Neural Network Trajectory Tracking Control for Remotely Operated Vehicle [J].
Chu, Zhenzhong ;
Zhu, Daqi ;
Yang, Simon X. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (07) :1633-1645
[5]   Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition [J].
Ding, Feng ;
Liu, Ximei ;
Ma, Xingyun .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 :135-143
[6]   The recursive least squares identification algorithm for a class of Wiener nonlinear systems [J].
Ding, Feng ;
Liu, Ximei ;
Liu, Manman .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (07) :1518-1526
[7]   Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition [J].
Ding, Feng ;
Wang, Xuehai ;
Chen, Qijia ;
Xiao, Yongsong .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (09) :3323-3338
[8]   An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering [J].
Ding, Feng ;
Liu, Ximei ;
Gu, Ya .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (02) :398-408
[9]   Array Factor Forming for Image Reconstruction of One-Dimensional Nonuniform Aperture Synthesis Radiometers [J].
Feng, Li ;
Wu, Minghu ;
Li, Qingxia ;
Chen, Ke ;
Li, Yufang ;
He, Zhangqing ;
Tong, Jing ;
Tu, Lingying ;
Xie, Honggang ;
Lu, Hailiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (02) :237-241
[10]   Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle [J].
Hu, Peipei ;
Ding, Feng .
NONLINEAR DYNAMICS, 2013, 73 (1-2) :583-592