Local models and integrability of certain almost Kahler 4-manifolds

被引:19
作者
Apostolov, V
Armstrong, J
Draghici, T
机构
[1] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
[2] Florida Int Univ, Dept Math, Miami, FL 33199 USA
关键词
D O I
10.1007/s002080200319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify, up to a local isometry, all non-Kahler almost Kahler4-manifolds for which the fundamental 2-form is an eigenform of the Weyl tensor, and whose Ricci tensor is invariant with respect to the almost complex structure. Equivalently, such almost Kahler4-manifolds satisfy the third curvature condition of A. Gray. We use our local classification to show that, in the compact case, the third curvature condition of Gray is equivalent to the integrability of the corresponding almost complex structure.
引用
收藏
页码:633 / 666
页数:34
相关论文
共 48 条
[1]  
Alexandrov B., 1998, J. Geom, V62, P1, DOI [10.1007/BF01237595, DOI 10.1007/BF01237595]
[2]   Symplectic 4-manifolds with Hermitian Weyl tensor [J].
Apostolov, V ;
Armstrong, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) :4501-4513
[3]   An integrability theorem for almost Kahler 4-manifolds [J].
Apostolov, V ;
Draghici, T ;
Kotschick, D .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05) :413-418
[4]   A splitting theorem for Kahler manifolds whose Ricci tensors have constant eigenvalues [J].
Apostolov, V ;
Draghici, T ;
Moroianu, A .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (07) :769-789
[5]  
APOSTOLOV V, IN PRESS ANN GLOB AN
[6]  
APOSTOLOV V, IN PRESS COMPOSITIO
[7]  
Armstrong J, 2002, J REINE ANGEW MATH, V542, P53
[8]  
Armstrong J, 1997, Q J MATH, V48, P405
[9]  
Aronszajn N., 1957, J. Math. Pures Appl, V36, P235
[10]  
Barth W., 1984, COMPACT COMPLEX SURF