MINIMA IN BRANCHING RANDOM WALKS

被引:92
作者
Addario-Berry, Louigi [1 ]
Reed, Bruce [2 ,3 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] McGill Univ, Sch Comp Sci, Canada Res Chair, Montreal, PQ H3A 2A7, Canada
[3] INRIA, Equipe Mascotte, Labo 13S, Sophia Antipolis, France
基金
加拿大自然科学与工程研究理事会;
关键词
Branching random walks; branching processes; random trees; WEIGHTED HEIGHT; DISPLACEMENT; DEVIATIONS; POSITION;
D O I
10.1214/08-AOP428
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a branching random walk, let M-n be the minimum position of any member of the nth generation. We calculate EMn to within O(1) and prove exponential tail bounds for P{vertical bar M-n - EMn vertical bar > x}, under quite general conditions on the branching random walk. In particular, together with work by Bramson [Z. Wahrsch. Verw. Gebiete 45 (1978) 89-108], our results fully characterize the possible behavior of EMn when the branching random walk has bounded branching and step size.
引用
收藏
页码:1044 / 1079
页数:36
相关论文
共 28 条
[1]  
Alon N., 2004, PROBABILISTIC METHOD
[2]  
Andersen E. Sparre., 1953, Math. Scand, V1, P263, DOI [10.7146/math.scand.a-10385, DOI 10.7146/MATH.SCAND.A-10385]
[3]  
[Anonymous], 1993, Large deviations techniques and applications
[4]   Limit theorems for the minimal position in a branching random walk with independent logconcave displacements [J].
Bachmann, M .
ADVANCES IN APPLIED PROBABILITY, 2000, 32 (01) :159-176
[5]  
BACHMANN M, 1998, THESIS PURDUE U
[6]   ON DEVIATIONS OF THE SAMPLE-MEAN [J].
BAHADUR, RR ;
RAO, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04) :1015-1027
[7]   1ST-BIRTH AND LAST-BIRTH PROBLEMS FOR A MULTITYPE AGE-DEPENDENT BRANCHING-PROCESS [J].
BIGGINS, JD .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (03) :446-459
[8]   Tightness for the minimal displacement of branching random walk [J].
Bramson, Maury ;
Zeitouni, Ofer .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[9]   TIGHTNESS FOR A FAMILY OF RECURSION EQUATIONS [J].
Bramson, Maury ;
Zeitouni, Ofer .
ANNALS OF PROBABILITY, 2009, 37 (02) :615-653
[10]   MAXIMAL DISPLACEMENT OF BRANCHING BROWNIAN-MOTION [J].
BRAMSON, MD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :531-581