Raman spectroscopic histology using machine learning for nonalcoholic fatty liver disease

被引:18
作者
Helal, Khalifa Mohammad [1 ,2 ]
Taylor, James Nicholas [3 ]
Cahyadi, Harsono [4 ]
Okajima, Akira [5 ]
Tabata, Koji [3 ]
Itoh, Yoshito [5 ]
Tanaka, Hideo [4 ]
Fujita, Katsumasa [6 ,7 ,8 ]
Harada, Yoshinori [4 ]
Komatsuzaki, Tamiki [1 ,3 ,9 ,10 ]
机构
[1] Hokkaido Univ, Grad Sch Life Sci, Sapporo, Hokkaido, Japan
[2] Comilla Univ, Dept Math, Cumilla, Bangladesh
[3] Hokkaido Univ, Inst Elect Sci, Res Ctr Math Social Creat, Sapporo, Hokkaido, Japan
[4] Kyoto Prefectural Univ Med, Dept Pathol & Cell Regulat, Kyoto, Japan
[5] Kyoto Prefectural Univ Med, Dept Gastroenterol & Hepatol, Kyoto, Japan
[6] Osaka Univ, Dept Appl Phys, Suita, Osaka, Japan
[7] Osaka Univ, Inst Open & Transdisciplinary Res Initiat, Transdimens Life Imaging Div, Suita, Osaka, Japan
[8] Osaka Univ, Natl Inst Adv Ind Sci & Technol, Adv Photon & Biosensing Open Innovat Lab, Suita, Osaka, Japan
[9] Hokkaido Univ, Inst Chem React Design & Discovery, Sapporo, Hokkaido, Japan
[10] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, Dijon, France
关键词
machine learning; nonalcoholic fatty liver disease; Raman hyperspectral imaging; rate-distortion theory; superpixel segmentation; STEATOHEPATITIS; CLASSIFICATION; VARIABILITY; VALIDATION;
D O I
10.1002/1873-3468.13520
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histopathology requires the expertise of specialists to diagnose morphological features of cells and tissues. Raman imaging can provide additional biochemical information to benefit histological disease diagnosis. Using a dietary model of nonalcoholic fatty liver disease in rats, we combine Raman imaging with machine learning and information theory to evaluate cellular-level information in liver tissue samples. After increasing signal-to-noise ratio in the Raman images through superpixel segmentation, we extract biochemically distinct regions within liver tissues, allowing for quantification of characteristic biochemical components such as vitamin A and lipids. Armed with microscopic information about the biochemical composition of the liver tissues, we group tissues having similar composition, providing a descriptor enabling inference of tissue states, contributing valuable information to histological inspection.
引用
收藏
页码:2535 / 2544
页数:10
相关论文
共 50 条
[1]   Nonalcoholic fatty liver disease and early prediction of gestational diabetes mellitus using machine learning methods [J].
Lee, Seung Mi ;
Hwangbo, Suhyun ;
Norwitz, Errol R. ;
Koo, Ja Nam ;
Oh, Ig Hwan ;
Choi, Eun Saem ;
Jung, Young Mi ;
Kim, Sun Min ;
Kim, Byoung Jae ;
Kim, Sang Youn ;
Kim, Gyoung Min ;
Kim, Won ;
Joo, Sae Kyung ;
Shin, Sue ;
Park, Chan-Wook ;
Park, Taesung ;
Park, Joong Shin .
CLINICAL AND MOLECULAR HEPATOLOGY, 2022, 28 (01) :105-116
[2]   Development and validation of machine learning models for nonalcoholic fatty liver disease [J].
Peng, Hong-Ye ;
Duan, Shao-Jie ;
Pan, Liang ;
Wang, Mi-Yuan ;
Chen, Jia-Liang ;
Wang, Yi-Chong ;
Yao, Shu-Kun .
HEPATOBILIARY & PANCREATIC DISEASES INTERNATIONAL, 2023, 22 (06) :615-621
[3]   Gallstone Disease Does Not Predict Liver Histology in Nonalcoholic Fatty Liver Disease [J].
Yilmaz, Yusuf ;
Ayyildiz, Talat ;
Akin, Hakan ;
Colak, Yasar ;
Ozturk, Oguzhan ;
Senates, Ebubekir ;
Tuncer, Ilyas ;
Dolar, Enver .
GUT AND LIVER, 2014, 8 (03) :313-317
[4]   Pediatric nonalcoholic fatty liver disease: Overview with emphasis on histology [J].
Takahashi, Yoshihisa ;
Fukusato, Toshio .
WORLD JOURNAL OF GASTROENTEROLOGY, 2010, 16 (42) :5280-5285
[5]   Machine Learning Models for Predicting Significant Liver Fibrosis in Patients with Severe Obesity and Nonalcoholic Fatty Liver Disease [J].
Lu, Chien-Hung ;
Wang, Weu ;
Li, Yu-Chuan Jack ;
Chang, I-Wei ;
Chen, Chi-Long ;
Su, Chien-Wei ;
Chang, Chun-Chao ;
Kao, Wei-Yu .
OBESITY SURGERY, 2024, 34 (12) :4393-4404
[6]   Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children [J].
Kleiner, David E. ;
Makhlouf, Hala R. .
CLINICS IN LIVER DISEASE, 2016, 20 (02) :293-+
[7]   Predicting the 5-Year Risk of Nonalcoholic Fatty Liver Disease Using Machine Learning Models: Prospective Cohort Study [J].
Huang, Guoqing ;
Jin, Qiankai ;
Mao, Yushan .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
[8]   Ultrasound-Based Machine Learning Approach for Detection of Nonalcoholic Fatty Liver Disease [J].
Tahmasebi, Aylin ;
Wang, Shuo ;
Wessner, Corinne E. ;
Vu, Trang ;
Liu, Ji-Bin ;
Forsberg, Flemming ;
Civan, Jesse ;
Guglielmo, Flavius F. ;
Eisenbrey, John R. .
JOURNAL OF ULTRASOUND IN MEDICINE, 2023, 42 (08) :1747-1756
[9]   Digital image analysis of ultrasound images using machine learning to diagnose pediatric nonalcoholic fatty liver disease [J].
Das, Amit ;
Connell, Mary ;
Khetarpal, Shailesh .
CLINICAL IMAGING, 2021, 77 :62-68
[10]   Macrophage Markers Are Poorly Associated With Liver Histology in Children With Nonalcoholic Fatty Liver Disease [J].
Kazankov, Konstantin ;
Alisi, Anna ;
Moller, Holger J. ;
De Vito, Rita ;
Rittig, Soren ;
Mahler, Birgitte ;
Nobili, Valerio ;
Gronbaek, Henning .
JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2018, 67 (05) :635-642