Spatiotemporal intermittency and chaotic saddles in the regularized long-wave equation

被引:11
|
作者
Rempel, Erico L. [1 ,2 ,3 ]
Miranda, Rodrigo A. [4 ,5 ]
Chian, Abraham C. -L. [2 ,3 ,4 ,5 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
[2] Inst Aeronaut Technol IEFM ITA, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[3] WISER, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[4] Natl Inst Space Res INPE, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[5] WISER, BR-12227010 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
chaos; entropy; laminar flow; nonlinear differential equations; pattern formation; spatiotemporal phenomena; water waves; wave equations; KURAMOTO-SIVASHINSKY EQUATION; DIMENSIONAL DYNAMICAL-SYSTEMS; PIPE-FLOW; TRANSITION; TURBULENCE; CRISIS; TRANSIENTS; EXPONENTS; MODEL;
D O I
10.1063/1.3183590
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Transition to intermittent spatiotemporal chaos is studied in the regularized long-wave equation, a nonlinear model of shallow water waves. A mechanism for the onset of on-off spatiotemporal intermittency is explored. In this mechanism, the coupling of two chaotic saddles triggers random switching between phases of laminar and bursty behaviors. The average time between bursts as a function of the control parameter follows a power law typical of crisis transitions in chaotic systems. The degree of spatiotemporal disorder in the observed fluid patterns is quantified by means of the time-averaged spectral entropy for both chaotic attractors and chaotic saddles. The implications of these results to other fluid systems are discussed.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] REGULARIZED LONG-WAVE EQUATION
    SHIVAMOGGI, BK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (01): : 55 - 56
  • [2] Solitary wave solutions for the regularized long-wave equation
    Irk, D.
    PHYSICS OF WAVE PHENOMENA, 2012, 20 (03) : 174 - 183
  • [3] Solitary wave solutions for the regularized long-wave equation
    D. Irk
    Physics of Wave Phenomena, 2012, 20 : 174 - 183
  • [4] Study of the generalization of regularized long-wave equation
    Yue Kai
    Jialiang Ji
    Zhixiang Yin
    Nonlinear Dynamics, 2022, 107 : 2745 - 2752
  • [5] SOLITARY WAVES OF THE REGULARIZED LONG-WAVE EQUATION
    GARDNER, LRT
    GARDNER, GA
    JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 91 (02) : 441 - 459
  • [6] Study of the generalization of regularized long-wave equation
    Kai, Yue
    Ji, Jialiang
    Yin, Zhixiang
    NONLINEAR DYNAMICS, 2022, 107 (03) : 2745 - 2752
  • [7] Transcendental surface wave to the symmetric regularized long-wave equation
    Fatema, Kaniz
    Islam, Md. Ekramul
    Akhter, Mousumi
    Akbar, M. Ali
    Inc, Mustafa
    PHYSICS LETTERS A, 2022, 439
  • [8] Multisymplectic numerical method for the regularized long-wave equation
    Cai, Jiaxiang
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) : 1821 - 1831
  • [9] A finite difference solution of the regularized long-wave equation
    Kutluay, S.
    Esen, A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006 (1-14) : 1 - 14
  • [10] FOURIER PSEUDOSPECTRAL SOLUTION OF THE REGULARIZED LONG-WAVE EQUATION
    SLOAN, DM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 36 (02) : 159 - 179