Lipid microdomains are required sites for the selective endocytosis and nuclear translocation of IFN-γ, its receptor chain IFN-γ receptor-1 and the phosphorylation and nuclear translocation of STAT1α

被引:63
作者
Subramaniam, PS [1 ]
Johnson, HM [1 ]
机构
[1] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
关键词
D O I
10.4049/jimmunol.169.4.1959
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
IFN-gamma contains a nuclear localization sequence that may play a role in the nuclear transport of activated STAT1alpha via a complex of IFN-gamma/IFN-gamma receptor (IFNGR)-1/STATIalpha with the nuclear importer nucleoprotein interactor 1. In this study, we examine the mechanism of endocytosis of IFNGR-1 and the relationship of its nuclear translocation to that of STAT1alpha. In untreated WISH cells, both IFNGR-1 and IFNGR-2 were constitutively localized within caveolae-like microdomains isolated from plasma membrane. However, treatment of cells with IFN-gamma resulted in rapid migration of IFNGR-1, but not IFNGR-2, from these microdomains. Filipin pretreatment, which specifically inhibits endocytosis from caveolae-like microdomains, inhibited the nuclear translocation of IFN-gamma and IFNGR-1 as well as the tyrosine phosphorylation and nuclear translocation of STAT1alpha, but did not affect the binding of IFN-gamma to these cells. In the Jurkat T lymphocyte cell line, which does not express caveolin-1, nuclear translocation of IFNGR-1 and STAT1alpha were similarly inhibited by filipin pretreatment. Isolation of lipid microdomains from Jurkat cells showed that both IFNGR-1 and IFNGR-2 were associated with lipid microdomains only after stimulation with IFN-gamma, suggesting that the IFNGR subunits are recruited to lipid microdomains by IFN-gamma binding in lymphocytes (Jurkat) in contrast to their constitutive presence in epithelial (WISH) cells. In contrast, treatments that block clathrin-dependent endocytosis did not inhibit either activation or nuclear translocation of STAT1alpha or the nuclear translocation of IFN-gamma or IFNGR-1. Thus, membrane lipid microdomains play an important role in IFN-gamma-initiated endocytic events involving IFNGR-1, and the nuclear translocation of IFN-gamma, IFNGR-1, and STAT1alpha.
引用
收藏
页码:1959 / 1969
页数:11
相关论文
共 45 条
[1]  
Alonso MA, 2001, J CELL SCI, V114, P3957
[2]  
Bach EA, 1996, MOL CELL BIOL, V16, P3214
[3]   NUCLEAR ACCUMULATION OF INTERFERON-GAMMA [J].
BADER, T ;
WIETZERBIN, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (25) :11831-11835
[4]   Transcription - Signal transduction and the control of gene expression [J].
Brivanlou, AH ;
Darnell, JE .
SCIENCE, 2002, 295 (5556) :813-818
[5]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[6]   Endocytosis and signaling cascades: a close encounter [J].
Cavalli, V ;
Corti, M ;
Gruenberg, J .
FEBS LETTERS, 2001, 498 (2-3) :190-196
[7]   A role for lipid rafts in B cell antigen receptor signaling and antigen targeting [J].
Cheng, PC ;
Dykstra, ML ;
Mitchell, RN ;
Pierce, SK .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 190 (11) :1549-1560
[8]   Floating the raft hypothesis: Lipid rafts play a role in immune cell activation [J].
Cherukuri, A ;
Dykstra, M ;
Pierce, SK .
IMMUNITY, 2001, 14 (06) :657-660
[9]  
DAMKE H, 1995, METHOD ENZYMOL, V257, P209
[10]   INDUCTION OF MUTANT DYNAMIN SPECIFICALLY BLOCKS ENDOCYTIC COATED VESICLE FORMATION [J].
DAMKE, H ;
BABA, T ;
WARNOCK, DE ;
SCHMID, SL .
JOURNAL OF CELL BIOLOGY, 1994, 127 (04) :915-934