Residual Neural Network in Genomics

被引:1
作者
Sabba, Sara [1 ]
Smara, Meroua [2 ]
Benhacine, Mehdi [2 ]
Terra, Loubna [2 ]
Terra, Zine Eddine [2 ]
机构
[1] Abdelhamid Mahri Univ, Dept Software Technol & Informat Syst, Lab Data Sci & Artificial Intelligence LISIA, Constantine, Algeria
[2] Abdelhamid Mahri Univ, Fac New Technol Informat & Commun, Dept Software Technol & Informat Syst, Constantine, Algeria
关键词
Deep Learning; genomics; convolutional neural network; companion; Residual neural network; super-enhancers; viral genomes; SUPER-ENHANCERS; CELL IDENTITY; DEEP;
D O I
10.56415/csjm.v30.17
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Residual neural network (ResNet) is a Deep Learning model introduced by He et al. in 2015 to enhance traditional convolu-tional neural networks proposed to solve computer vision prob-lems. It uses skip connections over some layer blocks to avoid vanishing gradient problem. Currently, many researches are fo-cused to test and prove the efficiency of the ResNet on different domains such as genomics. In fact, the study of human genomes provides important information on the detection of diseases and their best treatments. Therefore, most of the scientists opted for bioinformatics solutions to get results in a reasonable time.In this paper, our interest is to show the effectiveness of the ResNet model on genomics. For that, we propose two new ResNet models to enhance the results of two genomic problems previ-ously resolved by CNN models. The obtained results are very promising and they proved the performance of our ResNet mod-els compared to the CNN models.
引用
收藏
页码:308 / 334
页数:27
相关论文
共 66 条
[1]  
Alazab Moutaz, 2020, International Journal of Computer Information Systems and Industrial Management Applications, P168
[2]  
Albaradei Somayah, 2020, Gene X, V5, P100035, DOI 10.1016/j.gene.2020.100035
[3]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[4]   Pathology and viral metagenomics, a recent history [J].
Bernardo, Pauline ;
Albina, Emmanuel ;
Eloit, Marc ;
Roumagnac, Philippe .
M S-MEDECINE SCIENCES, 2013, 29 (05) :501-508
[5]   Transcriptional Addiction in Cancer [J].
Bradner, James E. ;
Hnisz, Denes ;
Young, Richard A. .
CELL, 2017, 168 (04) :629-643
[6]  
Bu H., 2019, DEEPSEN CODE
[7]   DEEPSEN: a convolutional neural network based method for super-enhancer prediction [J].
Bu, Hongda ;
Hao, Jiaqi ;
Gan, Yanglan ;
Zhou, Shuigeng ;
Guan, Jihong .
BMC BIOINFORMATICS, 2019, 20 (Suppl 15)
[8]   Deep Residual Learning for Nonlinear Regression [J].
Chen, Dongwei ;
Hu, Fei ;
Nian, Guokui ;
Yang, Tiantian .
ENTROPY, 2020, 22 (02)
[9]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[10]  
Davila-Ramos Sonia S, 2019, FRONT MICROBIOL, V10