Optimization of SVM Method with RBF kernel

被引:6
作者
Wang Cheng [1 ]
机构
[1] Hubei Inst Fine Arts, Dept Common Required Courses, Wuhan 430205, Hubei, Peoples R China
来源
FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5 | 2014年 / 496-500卷
关键词
Support Vector Machine; RBF Kernel; Bilinear Grid Search; Model Selection; Parameters Optimization;
D O I
10.4028/www.scientific.net/AMM.496-500.2306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Usually there is no a uniform model to the choice of SVM's kernel function and its parameters for SVM. This paper presents a bilinear grid search method for the purpose of getting the parameter (C, gamma) of SVM with RBF kernel, with the approach of combining grid search with bilinear search. Experiment results show that the proposed bilinear grid search. has combined both the advantage of moderate training quantity by the bilinear search and of high predict accuracy by the grid search.
引用
收藏
页码:2306 / 2310
页数:5
相关论文
共 7 条
[1]   Choosing multiple parameters for support vector machines [J].
Chapelle, O ;
Vapnik, V ;
Bousquet, O ;
Mukherjee, S .
MACHINE LEARNING, 2002, 46 (1-3) :131-159
[2]   Asymptotic behaviors of support vector machines with Gaussian kernel [J].
Keerthi, SS ;
Lin, CJ .
NEURAL COMPUTATION, 2003, 15 (07) :1667-1689
[3]  
Lin H.-T., 2003, Neural Computation, P1
[4]  
SARLE WS, 1997, PERIODIC POSTING USE
[5]  
Vapnik V., 1995, NATURE STATICAL LEAR
[6]  
[王鹏 Wang Peng], 2003, [计算机工程与应用, Computer Engineering and Application], V39, P72
[7]  
Zhang Xiao-Hua, 2005, COMPUTER APPL RES