Restriction of square integrable representations: Discrete spectrum

被引:12
作者
Orsted, B
Vargas, J
机构
[1] Univ So Denmark, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
[2] Univ Nacl Cordoba, Fac Matemat Astron & Fis, Ctr Invest & Estudios Matemat, RA-5000 Cordoba, Argentina
关键词
D O I
10.1215/S0012-7094-04-12336-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the problem of restricting a square integrable representation of a connected semisimple Lie group to a reductive subgroup. Using a geometric method of restricting sections of a vector bundle to a submanifold, we obtain information about both the discrete and the continuous spectrum. We also show the (L-2, L-2)- continuity of the associated Berezin transform and that, tinder suitable general conditions, the Berezin transform is (L-p, L-p)-continuous for 1 less than or equal to p less than or equal to infinity.
引用
收藏
页码:609 / 633
页数:25
相关论文
共 33 条
[1]  
[Anonymous], 2000, ADV STUDIES PURE MAT
[2]   GEOMETRIC CONSTRUCTION OF DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS [J].
ATIYAH, M ;
SCHMID, W .
INVENTIONES MATHEMATICAE, 1977, 42 :1-62
[3]  
BERS L, 1964, LECT APPL MATH, V3, P131
[4]   KUNZE-STEIN PHENOMENON [J].
COWLING, M .
ANNALS OF MATHEMATICS, 1978, 107 (02) :209-234
[5]  
Gross B., 2000, P S PURE MATH, V68, P255
[6]  
HARISHCHANDRA, 1984, COLLECTED PAPERS, V3, P4
[7]  
HECHT H, 1975, INVENT MATH, V31, P129
[8]   MULTIPLICITY FORMULAS FOR DISCRETE SERIES [J].
HOTTA, R ;
PARTHASA.R .
INVENTIONES MATHEMATICAE, 1974, 26 (02) :133-178
[9]  
HOWE R, 1983, PROGR MATH, V40, P156
[10]  
JACOBSEN HP, 1979, J FUNCT ANAL, V34, P29