On Lagrange polynomials and the rate of approximation of planar sets by polynomial Julia sets

被引:4
作者
Bialas-Ciez, Leokadia [1 ]
Kosek, Marta [1 ]
Stawiska, Malgorzata [2 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Math Reviews, 416 Fourth St, Ann Arbor, MI USA
关键词
Lagrange polynomials; Lebesgue constants; Green function; Julia sets; UNIT DISK; LEJA POINTS; LEBESGUE CONSTANTS; INTERPOLATION; INEQUALITY; SEQUENCES;
D O I
10.1016/j.jmaa.2018.04.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the approximation of nonempty compact planar sets by filled-in Julia sets of polynomials developed in [27] and analyze the rate of approximation. We use slightly modified fundamental Lagrange interpolation polynomials and show that taking certain classes of nodes with subexponential growth of Lebesgue constants improves the approximation rate. To this end we investigate properties of some arrays of points in C. In particular we prove subexponential growth of Lebesgue constants for pseudo Leja sequences with bounded Edrei growth on finite unions of quasiconformal arcs. Finally, for some classes of sets we estimate more precisely the rate of approximation by filled-in Julia sets in Hausdorff and Klimek metrics. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:507 / 530
页数:24
相关论文
共 42 条
[1]   On Lebesgue constants for interpolation points on a quasiconformal arc [J].
Andrievskii, Vladimir .
JOURNAL OF APPROXIMATION THEORY, 2017, 217 :57-63
[2]  
[Anonymous], AM MATH SOC C PUBLIC
[3]  
[Anonymous], 1995, POTENTIAL THEORY COM
[4]  
Belghiti M. T., 2015, POLISH ACAD SCI I MA, V107, P43
[5]  
Bialas-Ciei L., 2011, POTENTIAL ANAL, V34, P121
[6]   Jackson's inequality in the complex plane and the Lojasiewicz-Siciak inequality of Green's function [J].
Bialas-Ciez, Leokadia ;
Eggink, Raimondo .
JOURNAL OF APPROXIMATION THEORY, 2016, 207 :46-59
[7]   Pseudo Leja sequences [J].
Bialas-Ciez, Leokadia ;
Calvi, Jean-Paul .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (01) :53-75
[8]   Dynamical dessins are dense [J].
Bishop, Christopher J. ;
Pilgrim, Kevin M. .
REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (03) :1033-1040
[9]   POLYNOMIAL INTERPOLATION OF HOLOMORPHIC-FUNCTIONS IN C AND CN [J].
BLOOM, T ;
BOS, L ;
CHRISTENSEN, C ;
LEVENBERG, N .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1992, 22 (02) :441-470
[10]   Computing Fekete and Lebesgue points: Simplex, square, disk [J].
Briani, Matteo ;
Sommariva, Alvise ;
Vianello, Marco .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) :2477-2486