Gene expression in canine atopic dermatitis and correlation with clinical severity scores

被引:45
|
作者
Wood, Shona H. [1 ,2 ]
Clements, Dylan N. [4 ]
Ollier, William E. [2 ]
Nuttall, Tim [3 ]
McEwan, Neil A. [3 ]
Carter, Stuart D. [1 ]
机构
[1] Univ Liverpool, Fac Vet Sci, Dept Vet Pathol, Liverpool L69 3ZJ, Merseyside, England
[2] Univ Manchester, Ctr Integrated Genom Med Res, Manchester, Lancs, England
[3] Univ Liverpool, Dept Vet Clin Sci, Leahurst, Cheshire, England
[4] Univ Edinburgh, Royal Dick Sch Vet Studies, Roslin Inst, Roslin EH25 9RG, Midlothian, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
Atopic dermatitis; Canine; Severity scores; qPCR; ACVD TASK-FORCE; PROLIFERATOR-ACTIVATED RECEPTORS; MESSENGER-RNA EXPRESSION; REAL-TIME PCR; SKIN BARRIER; SPINK5; GENE; P-SELECTIN; CYSTATIN-A; T-CELLS; ASSOCIATION;
D O I
10.1016/j.jdermsci.2009.03.005
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background: Canine atopic dermatitis (cAD) is a common condition in dogs that may be a naturally occurring model for human atopic dermatitis (hAD). Despite this, comparative research is limited, particularly into the genetic background of cAD. Objectives: 1. Measure candidate gene expression in cAD skin using quantitative real time PCR (qPCR) 2. Correlate gene expression to clinical cAD scores (Canine Atopic Dermatitis Extent and Severity Index [CADESI]-03 and intradermal allergen test [1DT]). Methods: mRNA was extracted from biopsies of non-lesional and lesional skin from atopic dogs, and healthy skin from non-atopic dogs. Gene expression was quantified using qPCR, and compared between non-lesional atopic, lesional atopic and healthy skin. Gene expression in atopic skin was correlated with clinical severity (CADESI-03) and the number of positive reactions on an IDT. Results: Of the 20 quantified genes, I I demonstrated statistically significant altered mRNA expression between atopic and healthy skin; dipeptidyl-peptidase-4 (DPP4), phosphatidylinositol-3,4,5-trisphosphate-5-phosphatase-2 (INPPL1), serine protease inhibitor kazal type-5 (SPINK5), sphingosine-phosphate lyase-1 (SGPL1), peroxisome proliferator-activated receptor gamma (PPAR gamma), S100 calcium-binding protein A8 (S100A8), Plakophilin-2 (PKP2), Periostin (POSTN), Cullin4A, TNF-alpha and metalloproteinase inhibitor-1 (TIMP-1). Three genes correlated with CADESI-03: serum amyloid A 1 (SAA-1),S100A8,and PKP2; and four with IDT results: mast cell protease 1 (CMA1), SAA-1, S100A8 and SPINK5. Conclusion: Genes with altered expression included those relevant to skin barrier formation and immune function, suggesting both are relevant in the pathogenesis of AD. Many of these genes reflect the proposed pathogenesis in hAD, supporting the use of dogs as a model for hAD. Furthermore, these genes may be considered suitable targets for future genetic and protein function studies in human and canine AD. (C) 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 50 条
  • [21] Impact of childhood atopic dermatitis on family: correlation with disease severity
    Abdel-Maguid, Azza M.
    Abd El Salam, Esraa N.
    Gaber, Hisham D.
    EGYPTIAN JOURNAL OF DERMATOLOGY AND VENEREOLOGY, 2022, 42 (01): : 40 - 44
  • [22] The ACVD task force on canine atopic dermatitis (XII): the relationship of cutaneous infections to the pathogenesis and clinical course of canine atopic dermatitis
    DeBoer, DJ
    Marsella, R
    VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 2001, 81 (3-4) : 239 - 249
  • [23] Toward a canine model of atopic dermatitis: amplification of cytokine-gene transcripts in the skin of atopic dogs
    Olivry, T
    Dean, GA
    Tompkins, MB
    Dow, JL
    Moore, PF
    EXPERIMENTAL DERMATOLOGY, 1999, 8 (03) : 204 - 211
  • [24] Association of Gap Junction Beta 2 and Transglutaminase 1 Gene Expression with Canine Atopic Dermatitis
    Suriyaphol, Gunnaporn
    Theerawatanasirikul, Sirin
    Chansiripornchai, Piyarat
    THAI JOURNAL OF VETERINARY MEDICINE, 2014, 44 (03): : 279 - 285
  • [25] Altered lipid properties of the stratum corneum in Canine Atopic Dermatitis
    Chermprapai, Suttiwee
    Broere, Femke
    Gooris, Gert
    Schlotter, Yvette M.
    Rutten, Victor P. M. G.
    Bouwstra, Joke A.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2018, 1860 (02): : 526 - 533
  • [26] Clinical comparison of human and canine atopic dermatitis using human diagnostic criteria (Japanese Dermatological Association, 2009): Proposal of provisional diagnostic criteria for canine atopic dermatitis
    Terada, Yuri
    Nagata, Masahiko
    Murayama, Nobuo
    Nanko, Hiroko
    Furue, Masutaka
    JOURNAL OF DERMATOLOGY, 2011, 38 (08): : 784 - 790
  • [27] The frequency of polymorphic variants of filaggrin gene and clinical atopic dermatitis
    Filipowska-Gronska, Agata
    Werynska-Kalemba, Maria
    Bozek, Andrzej
    Filipowska, Barbara
    Zebracka-Gala, Jadwiga
    Rusinek, Dagmara
    Kula, Dorota
    Jarzab, Jerzy
    POSTEPY DERMATOLOGII I ALERGOLOGII, 2016, 33 (01): : 37 - 41
  • [28] The effect of nematode administration on canine atopic dermatitis
    Mueller, R. S.
    Specht, L.
    Helmer, M.
    Epe, C.
    Wolken, S.
    Denk, D.
    Majzoub, M.
    Sauter-Luis, C.
    VETERINARY PARASITOLOGY, 2011, 181 (2-4) : 203 - 209
  • [29] Update on Atopic Dermatitis: Diagnosis, Severity Assessment, and Treatment Selection
    Fishbein, Anna B.
    Silverberg, Jonathan I.
    Wilson, Eve J.
    Ong, Peck Y.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE, 2020, 8 (01): : 91 - 101
  • [30] In vivo expression of antimicrobial peptides in atopic dermatitis
    Clausen, Maja-Lisa
    Slotved, H-C
    Krogfelt, Karen A.
    Andersen, Paal Skytt
    Agner, Tove
    EXPERIMENTAL DERMATOLOGY, 2016, 25 (01) : 3 - 9