A pipeline for the Diagnosis and Classification of Lung Lesions for patients with COVID-19

被引:0
作者
Davydko, Oleksandr [1 ]
Hladkyi, Yaroslav [1 ]
Linnik, Mykola [2 ]
Horodetska, Olena [1 ]
Pavlov, Vladimir [1 ]
Galkin, Oleksandr [1 ]
Nastenko, Ievgen [3 ]
Longo, Luca [4 ]
机构
[1] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Dept Biomed Cybernet, Kiev, Ukraine
[2] NAMS Ukraine, FG Yanovsky Natl Inst Phthisiol & Pulmonol, Dept Epidemiol & Org Problems Phthisiol, Kiev, Ukraine
[3] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Dept Biomed Cybernet, Amosov Natl Inst Cardiovasc Surg, Kiev, Ukraine
[4] Technol Univ Dublin, Sch Comp Sci, AICL Lab, Dublin, Ireland
来源
2022 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT) | 2022年
关键词
COVID-19; classification; segmentation; neural network; logistic self-organized forest; texture analysis;
D O I
10.1109/CSIT56902.2022.10000435
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The current study considers the development of a 5-layer pipeline for identifying and classifying COVID-19-induced lung lesions. Such system is multilayer, built upon convolutional and fully connected neural networks and logistic self-organised forest built using the group method of data handling (GMDH) principles. This pipeline includes a mechanism for finding lesions regions in lungs computer tomography images and for calculating related lung damage volume. The layer for finding images with lesions reached a Matthews Correlation Coefficient of 0.98. The layer for lesions segmentation reached a Dice similarity coefficient of 0.74, while the layer for lesions classification reached F1-scores of 1, 0.95, 0.93 respectively for the ground-glass, opacity, crazy-paving and consolidation lesion type. Results demonstrate the effectiveness of the implemented multi-layer system in solving tasks of lesions identification and classification while being composed into a single pipeline.
引用
收藏
页码:551 / 554
页数:4
相关论文
共 15 条
[1]   Diagnosis of COVID-19 in CT image using CNN and XGBoost [J].
Carvalho, Edelson Damasceno ;
Carvalho, Edson Damasceno ;
de Carvalho Filho, Antonio Oseas ;
Duarte de Araujo, Flavio Henrique ;
Lira Rabelo, Ricardo de Andrade .
2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, :811-816
[2]  
Davydko O., 2021, 2021 IEEE 16 INT C C
[3]   Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem [J].
Hofmanninger, Johannes ;
Prayer, Forian ;
Pan, Jeanny ;
Roehrich, Sebastian ;
Prosch, Helmut ;
Langs, Georg .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2020, 4 (01)
[4]  
Ma J., 2020, Covid-19 ct lung and infection segmentation dataset
[5]  
Matviichuk O., 2021, 2021 IEEE 16 INT C C
[6]  
Nastenko I., 2019, ADV INTELLIGENT SYST, V4, P535
[7]   Classification of Coronavirus (COVID-19) fromX-rayandCTimages using shrunken features [J].
Ozturk, Saban ;
Ozkaya, Umut ;
Barstugan, Mucahid .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (01) :5-15
[8]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[9]  
Shah V., 2020, PREPRINT MEDRXIV, DOI [10.1101/2020.07.11.20151332, DOI 10.1101/2020.07.11.20151332]
[10]  
Silva Pedro, 2020, Inform Med Unlocked, V20, P100427, DOI 10.1016/j.imu.2020.100427