Machine-Learning Studies on Spin Models

被引:49
作者
Shiina, Kenta [1 ,2 ]
Mori, Hiroyuki [1 ]
Okabe, Yutaka [1 ]
Lee, Hwee Kuan [2 ,3 ,4 ,5 ]
机构
[1] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[2] ASTAR, Bioinformat Inst, 30 Biopolis St,07-01 Matrix, Singapore 138671, Singapore
[3] Natl Univ Singapore, Sch Comp, 13 Comp Dr, Singapore 117417, Singapore
[4] Singapore Eye Res Inst SERI, 11 Third Hosp Ave, Singapore 168751, Singapore
[5] Image & Pervas Access Lab IPAL, 1 Fusionopolis Way,21-01 Connexis South Tower, Singapore 138632, Singapore
基金
日本学术振兴会;
关键词
D O I
10.1038/s41598-020-58263-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the recent developments in machine learning, Carrasquilla and Melko have proposed a paradigm that is complementary to the conventional approach for the study of spin models. As an alternative to investigating the thermal average of macroscopic physical quantities, they have used the spin configurations for the classification of the disordered and ordered phases of a phase transition through machine learning. We extend and generalize this method. We focus on the configuration of the long-range correlation function instead of the spin configuration itself, which enables us to provide the same treatment to multi-component systems and the systems with a vector order parameter. We analyze the Berezinskii-Kosterlitz-Thouless (BKT) transition with the same technique to classify three phases: the disordered, the BKT, and the ordered phases. We also present the classification of a model using the training data of a different model.
引用
收藏
页数:6
相关论文
共 21 条
[1]  
Abadi M., 2015, P 12 USENIX S OPERAT
[2]   Machine learning vortices at the Kosterlitz-Thouless transition [J].
Beach, Matthew J. S. ;
Golubeva, Anna ;
Melko, Roger G. .
PHYSICAL REVIEW B, 2018, 97 (04)
[3]  
BEREZINSKII VL, 1972, SOV PHYS JETP-USSR, V34, P610
[4]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[5]  
Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/nphys4035, 10.1038/NPHYS4035]
[6]  
Fisher M. E., 1988, FINITE SIZE SCALING, V51, P1
[7]   Universal jump in the helicity modulus of the two-dimensional quantum XY model [J].
Harada, K ;
Kawashima, N .
PHYSICAL REVIEW B, 1997, 55 (18) :11949-11952
[8]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[9]   CRITICAL PROPERTIES OF 2-DIMENSIONAL XY-MODEL [J].
KOSTERLITZ, JM .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1974, 7 (06) :1046-1060
[10]   ORDERING, METASTABILITY AND PHASE-TRANSITIONS IN 2 DIMENSIONAL SYSTEMS [J].
Kosterlitz, JM ;
Thouless, DJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (07) :1181-1203