Subspaces of codimension two with large projection constants

被引:6
作者
Castejon, Alberto [1 ]
Lewicki, Grzegorz [2 ]
机构
[1] Univ Vigo, Dept Appl Math 1, Vigo 36310, Spain
[2] Jagiellonian Univ, Inst Math, PL-30948 Krakow, Poland
关键词
Absolute projection constant; Minimal projection; Symmetric matrices; Eigenvalues; Eigenvectors; TENSOR-PRODUCT-SPACES; MINIMAL PROJECTIONS; UNIQUE MINIMALITY; SYMMETRIC-SPACES; EXTENSIONS; NORMS;
D O I
10.1016/j.jmaa.2014.06.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be an n-dimensional real Banach space and let. lambda(V) denote its absolute projection constant. For any N is an element of N, N >= n define lambda(N)(n) = sup{lambda(V): dim(V) = n, V subset of l(infinity)((N))}. The aim of this paper is to determine minimal projections with respect to l(1)-norm as well as with respect to l(infinity)-norm for subspaces given by solutions of certain extremal problems. As an application we show that for any n, N is an element of N, N >= n there exists an n-dimensional subspace V-n subset of l(1)((N)) such that lambda(N)(n) = lambda(V-n,l(1)((N))). Also we calculate relative and absolute projection constants of some subspaces of codimension two in l(1)((N)) and l(infinity)((N)) for N >= 3 being odd natural number. Moreover, we show that for any odd natural number n >= 3, lambda(n+1)(n) < max(x epsilon[0,1]) f(n)(x) <= lambda(n+2)(n), where f(n)(x) = 2n/n+1(1 - x) + 1/2(x - 21-x/n+1 + root(21-x/n+1 - x)(2) + 4(1 - x)x). Also for any n is an element of N x(n) is an element of[0, 1] satisfying f(n)(x(n)) = max(x epsilon[0,1]) fn(x) will be calculated. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1391 / 1407
页数:17
相关论文
共 36 条
[1]  
Aksoy A.G., 2011, NUMER FUNCT ANAL OPT, V32, P1039
[2]   Minimal projections with respect to various norms [J].
Aksoy, Asuman Gueven ;
Lewicki, Grzegorz .
STUDIA MATHEMATICA, 2012, 210 (01) :1-16
[3]  
[Anonymous], 1969, B SOC MATH BELG
[4]  
Blatter J., 1974, Ann. Mat. Pura Appl., V101, P215
[5]  
Chalmers B.L., 1994, J OPERATOR THEORY, V32, P31
[6]   THE DETERMINATION OF MINIMAL PROJECTIONS AND EXTENSIONS IN L1 [J].
CHALMERS, BL ;
METCALF, FT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) :289-305
[7]   Symmetric spaces with maximal projection constants [J].
Chalmers, BL ;
Lewicki, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (01) :1-22
[8]  
Chalmers BL, 1999, STUD MATH, V134, P119
[9]   A proof of the Grunbaum conjecture [J].
Chalmers, Bruce L. ;
Lewicki, Grzegorz .
STUDIA MATHEMATICA, 2010, 200 (02) :103-129
[10]   Three-dimensional subspace of l∞(5) with maximal projection constant [J].
Chalmers, Bruce L. ;
Lewicki, Grzegorz .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (02) :553-592