Nanopatterns of Phospholipid Assemblies on Carbon Nanotubes: A Molecular Dynamics Simulation Study

被引:4
作者
Wu, Qing-Yan [1 ,2 ]
Tian, Wen-de [3 ]
Ma, Yu-qiang [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[3] Soochow Univ, Ctr Soft Condensed Matter Phys & Interdisciplinar, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
FORCE-FIELD; LATERAL ORGANIZATION; HIGHLY EFFICIENT; LIPID-MEMBRANES; SURFACTANTS; MODEL; DISPERSIONS; COMPOSITES; CURVATURE;
D O I
10.1021/acs.jpcc.7b10875
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The self-assembly of amphiphiles on the surface of carbon nanotubes is an effective strategy for the dispersion of carbon nanotubes in an aqueous environment. However, the underlying mechanism of the self-assembly of amphiphiles on carbon nanotubes remains elusive. In this article, extensive coarse-grained molecular dynamics simulations were performed to investigate the self-assembly of single-tailed phospholipid lysophosphatidylcholine on carbon nanotubes. The simulations present a cornucopia of polymorphic nanopatterns of amphiphile assemblies on carbon nanotubes with different amphiphile concentrations and carbon nanotube diameters. We further explore the mechanism for the formation of different nanopatterns. The results reveal that three factors the reasonable packing of hydrophilic headgroups and hydrophobic chains of amphiphiles, the arrangements of amphiphiles, and the amount of amphiphiles adsorbed on carbon nanotubes strongly influence the pattern formation. Additional simulations of armchair carbon nanotubes further verified and supplemented these inferences. This work provides new understandings to guide the improvement in the dispersion of carbon nanotubes and has implications on the exploitation of novel nanomaterials with complex structures.
引用
收藏
页码:7455 / 7463
页数:9
相关论文
共 43 条
[1]   Nanometre-size tubes of carbon [J].
Ajayan, PM ;
Ebbesen, TW .
REPORTS ON PROGRESS IN PHYSICS, 1997, 60 (10) :1025-1062
[2]   Self-assembly of surfactants and polymorphic transition in nanotubes [J].
Arai, Noriyoshi ;
Yasuoka, Kenji ;
Zeng, X. C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7916-7920
[3]   Carbon-nanotube photonics and optoelectronics [J].
Avouris, Phaedon ;
Freitag, Marcus ;
Perebeinos, Vasili .
NATURE PHOTONICS, 2008, 2 (06) :341-350
[4]   Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J].
Bahr, JL ;
Yang, JP ;
Kosynkin, DV ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (27) :6536-6542
[5]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[6]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[7]   Wrapping Nanotubles with Micelles, Hemimicelles, and Cylindrical Micelles [J].
Calvaresi, Matteo ;
Dallavalle, Marco ;
Zerbetto, Francesco .
SMALL, 2009, 5 (19) :2191-2198
[8]   Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites [J].
Coleman, Jonathan N. ;
Khan, Umar ;
Blau, Werner J. ;
Gun'ko, Yurii K. .
CARBON, 2006, 44 (09) :1624-1652
[9]   Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes [J].
Das, Sushanta K. ;
Sengupta, Sanghamitra ;
Velarde, Luis .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (02) :320-326
[10]   Improved Parameters for the Martini Coarse-Grained Protein Force Field [J].
de Jong, Djurre H. ;
Singh, Gurpreet ;
Bennett, W. F. Drew ;
Arnarez, Clement ;
Wassenaar, Tsjerk A. ;
Schafer, Lars V. ;
Periole, Xavier ;
Tieleman, D. Peter ;
Marrink, Siewert J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (01) :687-697