New exact solutions of a new (2+1)-dimensional integrable system

被引:13
作者
Shen, SF [1 ]
Pan, ZL
Zhang, J
Cai'er, Y
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Zhejiang Forestry Coll, Basic Dept, Linan 311300, Peoples R China
关键词
modified Jacobi elliptic function expansion method; (2+1)-dimensional integrable system; exact solution;
D O I
10.1016/j.physleta.2004.03.030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, a new (2 + 1)-dimensional integrable system is solved by using the modified Jacobi elliptic function expansion method. As a consequence, abundant families of Jacobi elliptic function solutions are obtained. When the modulus m --> 1 and m --> 0, those periodic solutions degenerate as the corresponding solitary wave solutions, shock wave solutions or trigonometric function solutions. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:226 / 232
页数:7
相关论文
共 20 条
[11]   Universal and integrable nonlinear evolution systems of equations in 2-1-1 dimensions [J].
Maccari, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (08) :4151-4164
[12]   The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations [J].
Parkes, EJ ;
Duffy, BR ;
Abbott, PC .
PHYSICS LETTERS A, 2002, 295 (5-6) :280-286
[13]   A note on the Jacobi elliptic function expansion method [J].
Shen, SF ;
Pan, ZL .
PHYSICS LETTERS A, 2003, 308 (2-3) :143-148
[14]   Auto-Backlund transformation and two families of analytical solutions to the (2+1)-dimensional soliton breaking equation [J].
Tian, B ;
Gao, YT .
PHYSICS LETTERS A, 1996, 212 (05) :247-252
[15]   Soliton solution of new (2+1) dimensional nonlinear partial differential equations [J].
Uthayakumar, A ;
Nakkeeran, K ;
Porsezian, K .
CHAOS SOLITONS & FRACTALS, 1999, 10 (09) :1513-1518
[16]   Exact solutions for a compound KdV-Burgers equation [J].
Wang, ML .
PHYSICS LETTERS A, 1996, 213 (5-6) :279-287
[17]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172
[18]   The new extended Jacobian elliptic function expansion algorithm and its applications in nonlinear mathematical physics equations [J].
Yan, ZY .
COMPUTER PHYSICS COMMUNICATIONS, 2003, 153 (02) :145-154
[19]   Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey-Stewartson-type equation via a new method [J].
Yan, ZY .
CHAOS SOLITONS & FRACTALS, 2003, 18 (02) :299-309
[20]   The extended Jacobian elliptic function expansion method and its application in the generalized Hirota-Satsuma coupled KdV system [J].
Yan, ZY .
CHAOS SOLITONS & FRACTALS, 2003, 15 (03) :575-583