New exact solutions of a new (2+1)-dimensional integrable system

被引:13
作者
Shen, SF [1 ]
Pan, ZL
Zhang, J
Cai'er, Y
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Zhejiang Forestry Coll, Basic Dept, Linan 311300, Peoples R China
关键词
modified Jacobi elliptic function expansion method; (2+1)-dimensional integrable system; exact solution;
D O I
10.1016/j.physleta.2004.03.030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, a new (2 + 1)-dimensional integrable system is solved by using the modified Jacobi elliptic function expansion method. As a consequence, abundant families of Jacobi elliptic function solutions are obtained. When the modulus m --> 1 and m --> 0, those periodic solutions degenerate as the corresponding solitary wave solutions, shock wave solutions or trigonometric function solutions. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:226 / 232
页数:7
相关论文
共 20 条
[1]   Improved Jacobin elliptic function method and its applications [J].
Chen, HT ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2003, 15 (03) :585-591
[2]   A series of new explicit exact solutions for the coupled Klein-Gordon-Schrodinger equations [J].
Darwish, A ;
Fan, EG .
CHAOS SOLITONS & FRACTALS, 2004, 20 (03) :609-617
[3]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[4]   Applications of the Jacobi elliptic function method to special-type nonlinear equations [J].
Fan, EG ;
Zhang, H .
PHYSICS LETTERS A, 2002, 305 (06) :383-392
[5]   New transformations and new approach to find exact solutions to nonlinear equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD .
PHYSICS LETTERS A, 2002, 299 (5-6) :507-512
[6]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[7]   On Backlund transformation for a generalized Burgers equation and solitonic solutions [J].
Hong, WP .
PHYSICS LETTERS A, 2000, 268 (1-2) :81-84
[8]   Auto-Backlund transformation and analytic solutions for general variable-coefficient KdV equation [J].
Hong, WY ;
Jung, YD .
PHYSICS LETTERS A, 1999, 257 (3-4) :149-152
[9]   The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction-diffusion equations [J].
Khater, AH ;
Malfliet, W ;
Callebaut, DK ;
Kamel, ES .
CHAOS SOLITONS & FRACTALS, 2002, 14 (03) :513-522
[10]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74