Visible Light Driven Hot-Electron Injection by Pd Nanoparticles: Fast Response in Metal-Semiconductor Photodetection

被引:38
作者
Chen, Liang [1 ]
Mao, Sui [1 ]
Wang, Pu [2 ]
Yao, Zhao [3 ]
Du, Zhonglin [1 ]
Zhu, Zhijun [1 ]
Belfiore, Laurence A. [4 ]
Tang, Jianguo [1 ]
机构
[1] Qingdao Univ, Natl Ctr Int Res Hybrid Mat Technol, Natl Base Int Sci & Technol Cooperat, Inst Hybrid Mat,Coll Mat Sci & Engn, Qingdao 266071, Peoples R China
[2] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China
[3] Qingdao Univ, Coll Elect Informat, Qingdao 266071, Peoples R China
[4] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
confocal Kelvin probe force microscopy; hot‐ electron injection; nanoparticles; palladium; photo field effect transistor; PLASMON RESONANCE; OPTICAL-PROPERTIES; REFRACTIVE-INDEX; FABRICATION; PALLADIUM; TIO2; SHAPE; SIZE; THIN;
D O I
10.1002/adom.202001505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hot-electron injection induced by plasmon decay enables ultrafast electron transfer in femtosecond scale and therefore endows metallic nanoparticles (MNPs) promising potentials in high-speed optoelectronics. With much higher density of states next to its Fermi level, palladium (Pd) can more efficiently launch hot electrons according to the theoretical prediction, as compared to the conventional plasmonic NPs. In this work, the optical properties of Pd NPs as well as the plasmon induced hot-electron injection are investigated through confocal Kelvin probe force microscopy. Analysis based on surface potential redistribution suggests Pd NPs can initiate dense hot-electron transfer in visible range. According to the photocurrent characterization of photo field effect transistors, in cooperation with TiOx the Pd NPs launch a rapid photocurrent increase with the excitation of 450 nm light as the hot-electron injection improves the electron depleting situation in TiOx thin film. The result confirms that Pd hot electrons can be energetic at visible range for photoelectric applications.
引用
收藏
页数:12
相关论文
共 50 条
[1]   The role of palladium in a hydrogen economy [J].
Adams, Brian D. ;
Chen, Aicheng .
MATERIALS TODAY, 2011, 14 (06) :282-289
[2]   Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry [J].
Brown, Ana M. ;
Sundararaman, Ravishankar ;
Narang, Prineha ;
Goddard, William A., III ;
Atwater, Harry A. .
ACS NANO, 2016, 10 (01) :957-966
[3]   On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap [J].
Chen, Bao-Qin ;
Zhang, Chao ;
Li, Jiafang ;
Li, Zhi-Yuan ;
Xia, Younan .
NANOSCALE, 2016, 8 (34) :15730-15736
[4]   Highly Desirable Photodetectors Derived from Versatile Plasmonic Nanostructures [J].
Chen, Hongyu ;
Su, Longxing ;
Jiang, Mingming ;
Fang, Xiaosheng .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (45)
[5]   Single-molecule strong coupling at room temperature in plasmonic nanocavities [J].
Chikkaraddy, Rohit ;
de Nijs, Bart ;
Benz, Felix ;
Barrow, Steven J. ;
Scherman, Oren A. ;
Rosta, Edina ;
Demetriadou, Angela ;
Fox, Peter ;
Hess, Ortwin ;
Baumberg, Jeremy J. .
NATURE, 2016, 535 (7610) :127-130
[6]   SPIN-ORBIT PROJECTED D DENSITIES-OF-STATES OF PD, AG, PT, AND AU [J].
CHRISTENSEN, NE .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1978, 8 (03) :L51-L55
[7]   Nanopore Fabrication by Heating Au Particles on Ceramic Substrates [J].
de Vreede, Lennart J. ;
van den Berg, Albert ;
Eijkel, Jan C. T. .
NANO LETTERS, 2015, 15 (01) :727-731
[8]   Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes [J].
DuChene, Joseph S. ;
Tagliabue, Giulia ;
Welch, Alex J. ;
Cheng, Wen-Hui ;
Atwater, Harry A. .
NANO LETTERS, 2018, 18 (04) :2545-2550
[9]   Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles [J].
Furube, Akihiro ;
Du, Luchao ;
Hara, Kohjiro ;
Katoh, Ryuzi ;
Tachiya, Masanori .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (48) :14852-+
[10]   Sensor photoresponse of thin-film oxides of zinc and titanium to oxygen gas [J].
Golego, N ;
Studenikin, SA ;
Cocivera, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1592-1594