Discriminative Dimensionality Reduction for the Visualization of Classifiers

被引:1
作者
Gisbrecht, Andrej [1 ]
Schulz, Alexander [1 ]
Hammer, Barbara [1 ]
机构
[1] Univ Bielefeld, CITEC Ctr Excellence, D-33615 Bielefeld, Germany
来源
PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2013 | 2015年 / 318卷
关键词
Dimensionality reduction; Fisher information metric; Classifier visualization; Evaluation;
D O I
10.1007/978-3-319-12610-4_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern nonlinear dimensionality reduction offers powerful techniques to directly inspect high dimensional data in the plane. Since the task of data projection is generally ill-posed and information loss cannot be avoided while projecting, the quality and meaningfulness of the outcome is not clear. In this contribution, we argue that discriminative dimensionality reduction, i. e. the concept to enhance the dimensionality reduction technique by supervised label information, offers a principled way to shape the outcome of a dimensionality reduction technique. We demonstrate the capacity of this approach for benchmark data sets. In addition, based on discriminative dimensionality reduction, we propose a pipeline how to visualize the function of general nonlinear classifiers in the plane. We demonstrate this approach by providing a generic visualization of the function of support vector machine classifiers.
引用
收藏
页码:39 / 56
页数:18
相关论文
共 38 条
[1]  
[Anonymous], ESANN 12
[2]  
[Anonymous], 2010, Interactive data visualization: foundations, techniques, and applications
[3]  
[Anonymous], 2001, The elements of statistical learning: data mining, inference and prediction
[4]   Generalized discriminant analysis using a kernel approach [J].
Baudat, G ;
Anouar, FE .
NEURAL COMPUTATION, 2000, 12 (10) :2385-2404
[5]  
Bekkerman R., 2011, SCALING MACHINE LEAR
[6]  
Biehl M., 2011, DAGST SEM, V1
[7]  
Braun ML, 2008, J MACH LEARN RES, V9, P1875
[8]   A General Framework for Dimensionality-Reducing Data Visualization Mapping [J].
Bunte, Kerstin ;
Biehl, Michael ;
Hammer, Barbara .
NEURAL COMPUTATION, 2012, 24 (03) :771-804
[9]   Limited Rank Matrix Learning, discriminative dimension reduction and visualization [J].
Bunte, Kerstin ;
Schneider, Petra ;
Hammer, Barbara ;
Schleif, Frank-Michael ;
Villmann, Thomas ;
Biehl, Michael .
NEURAL NETWORKS, 2012, 26 :159-173
[10]  
Caragea D, 2008, LECT NOTES COMPUT SC, V4404, P136, DOI 10.1007/978-3-540-71080-6_10