Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations

被引:5
作者
Ortiz-Rivero, Elisa [1 ]
Labrador-Paez, Lucia [2 ]
Rodriguez-Sevilla, Paloma [3 ]
Haro-Gonzalez, Patricia [1 ,4 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Mat, Fluorescence Imaging Grp, Madrid, Spain
[2] Royal Inst Technol KTH, Dept Appl Phys, Stockholm, Sweden
[3] Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance SUPA, St Andrews, Fife, Scotland
[4] Univ Autonoma Madrid, Inst Nicolas Cabrera, Madrid, Spain
关键词
nanoparticle; lanthanide; rare-earth; optical trapping; optical force; UP-CONVERSION; TWEEZERS; LUMINESCENCE; LIGHT; NANOCRYSTALS; FLUORESCENCE; PARTICLES; FORCES; TRAP; SIZE;
D O I
10.3389/fchem.2020.593398
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since Ashkin's pioneering work, optical tweezers have become an essential tool to immobilize and manipulate microscale and nanoscale objects. The use of optical tweezers is key for a variety of applications, including single-molecule spectroscopy, colloidal dynamics, tailored particle assembly, protein isolation, high-resolution surface studies, controlled investigation of biological processes, and surface-enhanced spectroscopy. In recent years, optical trapping of individual sub-100-nm objects has got the attention of the scientific community. In particular, the three-dimensional manipulation of single lanthanide-doped luminescent nanoparticles is of great interest due to the sensitivity of their luminescent properties to environmental conditions. Nevertheless, it is really challenging to trap and manipulate single lanthanide-doped nanoparticles due to the weak optical forces achieved with conventional optical trapping strategies. This limitation is caused, firstly, by the diffraction limit in the focusing of the trapping light and, secondly, by the Brownian motion of the trapped object. In this work, we summarize recent experimental approaches to increase the optical forces in the manipulation of lanthanide-doped nanoparticles, focusing our attention on their surface modification and providing a critical review of the state of the art and future prospects.
引用
收藏
页数:8
相关论文
共 70 条
[1]   Tunable emission and optical trapping of upconverting LiYF4:Yb,Er nanocrystal [J].
Anbharasi, L. ;
Rekha, E. A. Bhanu ;
Rahul, V. R. ;
Roy, Basudev ;
Gunaseelan, M. ;
Yamini, S. ;
Adusumalli, Venkata N. K. B. ;
Sarkar, Debashrita ;
Mahalingam, Venkataramanan ;
Senthilselvan, J. .
OPTICS AND LASER TECHNOLOGY, 2020, 126
[2]   Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses [J].
Asadollahbaik, Asa ;
Thiele, Simon ;
Weber, Ksenia ;
Kumar, Aashutosh ;
Drozella, Johannes ;
Sterl, Florian ;
Herkommer, Alois M. ;
Giessen, Harald ;
Fick, Jochen .
ACS PHOTONICS, 2020, 7 (01) :88-97
[3]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[4]   Three-dimensional force calibration of a single-beam optical gradient trap [J].
Bartlett, P ;
Henderson, S .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (33) :7757-7768
[5]   Optical Trapping of Nanoparticles and Quantum Dots [J].
Bendix, Poul M. ;
Jauffred, Liselotte ;
Norregaard, Kamilla ;
Oddershede, Lene B. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2014, 20 (03)
[6]  
Berthelot J, 2014, NAT NANOTECHNOL, V9, P295, DOI [10.1038/NNANO.2014.24, 10.1038/nnano.2014.24]
[7]   Nanoscale Optical Trapping: A Review [J].
Bradac, Carlo .
ADVANCED OPTICAL MATERIALS, 2018, 6 (12)
[8]   Calibration of force detection for arbitrarily shaped particles in optical tweezers [J].
Bui, Ann A. M. ;
Kashchuk, Anatolii V. ;
Balanant, Marie Anne ;
Nieminen, Timo A. ;
Rubinsztein-Dunlop, Halina ;
Stilgoe, Alexander B. .
SCIENTIFIC REPORTS, 2018, 8
[9]   Strategies for Optical Trapping in Biological Samples: Aiming at Microrobotic Surgeons [J].
Bunea, Ada-Ioana ;
Gluckstad, Jesper .
LASER & PHOTONICS REVIEWS, 2019, 13 (04)
[10]   Measuring Nanoparticle Polarizability Using Fluorescence Microscopy [J].
Cao, Wenhan ;
Chern, Margaret ;
Dennis, Allison M. ;
Brown, Keith A. .
NANO LETTERS, 2019, 19 (08) :5762-5768