SECOND-ORDER ASYMPTOTICS FOR QUANTUM HYPOTHESIS TESTING

被引:121
作者
Li, Ke [1 ,2 ,3 ]
机构
[1] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Natl Univ Singapore, Singapore 117548, Singapore
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Quantum hypothesis testing; quantum Stein's lemma; second-order asymptotics; finite sample size; INFORMATION-SPECTRUM APPROACH; RELATIVE ENTROPY; STRONG CONVERSE; THEOREM; CAPACITY; FORMULA;
D O I
10.1214/13-AOS1185
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the asymptotic theory of quantum hypothesis testing, the minimal error probability of the first kind jumps sharply from zero to one when the error exponent of the second kind passes by the point of the relative entropy of the two states in an increasing way. This is well known as the direct part and strong converse of quantum Stein's lemma. Here we look into the behavior of this sudden change and have make it clear how the error of first kind grows smoothly according to a lower order of the error exponent of the second kind, and hence we obtain the second-order asymptotics for quantum hypothesis testing. This actually implies quantum Stein's lemma as a special case. Meanwhile, our analysis also yields tight bounds for the case of finite sample size. These results have potential applications in quantum information theory. Our method is elementary, based on basic linear algebra and probability theory. It deals with the achievability part and the optimality part in a unified fashion.
引用
收藏
页码:171 / 189
页数:19
相关论文
共 32 条
[1]  
[Anonymous], 1978, THEOR PROB APPL
[2]  
[Anonymous], QUANTUM INFORM
[3]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[4]   Asymptotic error rates in quantum hypothesis testing [J].
Audenaert, K. M. R. ;
Nussbaum, M. ;
Szkola, A. ;
Verstraete, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :251-283
[5]   Quantum state discrimination bounds for finite sample size [J].
Audenaert, Koenraad M. R. ;
Mosonyi, Milan ;
Verstraete, Frank .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
[6]   A quantum version of Sanov's theorem [J].
Bjelakovic, I ;
Deuschel, JD ;
Krüger, T ;
Seiler, R ;
Siegmund-Schultze, R ;
Szkola, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (03) :659-671
[7]   An ergodic theorem for the quantum relative entropy [J].
Bjelakovic, I ;
Siegmund-Schultze, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 247 (03) :697-712
[8]   Typical support and Sanov large deviations of correlated states [J].
Bjelakovic, Igor ;
Deuschel, Jean-Dominique ;
Krueger, Tyll ;
Seiler, Ruedi ;
Siegmund-Schultze, Rainer ;
Szkola, Arleta .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (02) :559-584
[9]   HYPOTHESIS TESTING AND INFORMATION-THEORY [J].
BLAHUT, RE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (04) :405-417
[10]   A Generalization of Quantum Stein's Lemma [J].
Brandao, Fernando G. S. L. ;
Plenio, Martin B. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) :791-828