Free Vibration of Size and Temperature-Dependent Carbon Nanotube (CNT)-Reinforced Composite Nanoplates With CNT Agglomeration

被引:42
作者
Daghigh, Hamid [1 ]
Daghigh, Vahid [2 ]
机构
[1] Univ British Columbia, Sch Engn, Kelowna, BC, Canada
[2] Mississippi State Univ, Dept Aerosp Engn, Starkville, MS USA
关键词
TRANSFORMED DIFFERENTIAL QUADRATURE; BUCKLING ANALYSIS; NANOCOMPOSITE PLATES; MECHANICAL-PROPERTIES; THICK PLATES; PROPERTY; BEHAVIOR; PANELS; ADSORPTION; NANOFIBERS;
D O I
10.1002/pc.25057
中图分类号
TB33 [复合材料];
学科分类号
摘要
Free vibration analysis of size-dependent carbon nanotube-reinforced composite (CNTRC) nanoplates, resting on the visco-Pasternak foundation is studied. The Mori-Tanaka approach, considering carbon nanotube (CNT) agglomeration, is employed to derive the material properties of the composite nanoplates. The analysis is carried out for the uniform distribution (UD) and randomly oriented (RO) distribution of single-walled carbon nanotubes (SWCNTs) while the nanoplate and the foundation are considered to be temperature-dependent. Using Hamilton's principle, the governing differential equations are derived based on the Eringen's nonlocal elasticity theory and sinusoidal shear deformation theory (SSDT). The natural frequency of the nanoplates is then obtained by the Navier's analytical solution. To verify the method presented, the results are compared with those in the literature. Detailed parametric studies are performed to discuss the influences of CNTs agglomeration, nonlocal parameter, temperature, foundation parameters, the volume fraction of CNTs, plate length-to-thickness, and aspect ratios on the free vibration of the CNTRC nanoplates. (C) 2018 Society of Plastics Engineers
引用
收藏
页码:E1479 / E1494
页数:16
相关论文
共 84 条
[1]   How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? [J].
Arsawang, Uthumporn ;
Saengsawang, Oraphan ;
Rungrotmongkol, Thanyada ;
Sornmee, Purinchaya ;
Wittayanarakul, Kitiyaporn ;
Remsungnen, Tawun ;
Hannongbua, Supot .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2011, 29 (05) :591-596
[2]   A theory of plasticity for carbon nanotube reinforced composites [J].
Barai, Pallab ;
Weng, George J. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (04) :539-559
[3]   Applications of carbon nanotubes in drug delivery [J].
Bianco, A ;
Kostarelos, K ;
Prato, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (06) :674-679
[4]   Thermal properties and percolation in carbon nanotube-polymer composites [J].
Bonnet, P. ;
Sireude, D. ;
Garnier, B. ;
Chauvet, O. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[5]   Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites [J].
Coleman, Jonathan N. ;
Khan, Umar ;
Blau, Werner J. ;
Gun'ko, Yurii K. .
CARBON, 2006, 44 (09) :1624-1652
[6]  
Daghigh H., 2017, INT J ADV MANUF TECH, V10, P65
[7]   Influence of Maleated Polypropylene Coupling Agent on Mechanical and Thermal Behavior of Latania Fiber-Reinforced PP/EPDM Composites [J].
Daghigh, Vahid ;
Lacy, Thomas E., Jr. ;
Pittman, Charles U., Jr. ;
Daghigh, Hamid .
POLYMER COMPOSITES, 2018, 39 :E1751-E1759
[8]   Time-dependent creep analysis of rotating ferritic steel disk using Taylor series and Prandtl-Reuss relation [J].
Daghigh, Vahid ;
Daghigh, Hamid ;
Loghman, Abbas ;
Simoneau, Andy .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 77 :40-46
[9]  
Dresselhaus G., 1998, Physical properties of carbon nanotubes
[10]   Electronic, thermal and mechanical properties of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Charlier, JC ;
Hernández, E .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1823) :2065-2098