Construction of two qutrit entanglement by using magnetic resonance selective pulse sequences

被引:4
作者
Corbaci, Sevcan [1 ]
Karakas, Mikail Dogus [2 ]
Gencten, Azmi [1 ]
机构
[1] Ondokuz Mayis Univ, Fac Arts & Sci, Dept Phys, Samsun, Turkey
[2] Amasya Univ, Vocat Sch Design, Dept Comp Technol, Amasya, Turkey
来源
INTERNATIONAL CONFERENCE ON QUANTUM SCIENCE AND APPLICATIONS (ICQSA-2016) | 2016年 / 766卷
关键词
D O I
10.1088/1742-6596/766/1/012014
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum entanglement is essential for some applications of quantum information processing such as quantum cryptography, quantum teleportation and superdence coding. A qubit is a two level quantum system and four two-qubit entangled states called Bell states can be easily obtained for two-qubit states. A qutrit is a three level quantum system and Zeeman levels of spin-1 electron or nucleus can be referred as qutrit. For SI (S=1, I=1) spin system there exist nine two-qutrit states. So nine two-qutrit entangled states can be obtained by using the Hadamard and CNOT logic gates. In this study by considering N+@C-60 molecule as SI (S=1, I=1) spin system, two-qutrit entangled states are also obtained by using the magnetic resonance selective pulse sequences of Hadamard and CNOT logic gates. Then it is shown that these entangled states can be transformed into each other by the suggested transformation operators.
引用
收藏
页数:6
相关论文
共 11 条
  • [1] Qutrit magic state distillation
    Anwar, Hussain
    Campbell, Earl T.
    Browne, Dan E.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [2] Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
  • [3] Bloch vectors for qudits
    Bertlmann, Reinhold A.
    Krammer, Philipp
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (23)
  • [4] Das R., 2003, Int. J. Quant. Inf., V1, P387, DOI [DOI 10.1142/S0219749903000292, 10.1142/S0219749903000292]
  • [5] QUANTUM COMPUTATION
    DIVINCENZO, DP
    [J]. SCIENCE, 1995, 270 (5234) : 255 - 261
  • [6] Fullerene-based electron-spin quantum computer
    Harneit, W
    [J]. PHYSICAL REVIEW A, 2002, 65 (03): : 6
  • [7] Quantum entanglement
    Horodecki, Ryszard
    Horodecki, Pawel
    Horodecki, Michal
    Horodecki, Karol
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 865 - 942
  • [8] QUANTUM-MECHANICAL COMPUTERS
    LLOYD, S
    [J]. SCIENTIFIC AMERICAN, 1995, 273 (04) : 140 - 145
  • [9] Nielsen M A., 2001, Quantum Computation and Quantum Information, V2nd edn
  • [10] Oliveira I S., 2007, NMR Quantum Information Processing