Extremal Laplacian energy of threshold graphs

被引:2
作者
Das, Kinkar Ch. [1 ]
Mojallal, Seyed Ahmad [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
Laplacian eigenvalues; Laplacian energy; Threshold graphs; MATCHING ENERGY; RANDIC ENERGY; CONJECTURE;
D O I
10.1016/j.amc.2015.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected threshold graph of order n with in edges and trace T. In this paper we give a lower bound on Laplacian energy in terms of n, in and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. Moreover, we obtain the threshold graphs with the largest and the second largest Laplacian energies. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:267 / 280
页数:14
相关论文
共 34 条
[11]  
Das KC, 2013, MATCH-COMMUN MATH CO, V70, P663
[12]   On the Laplacian-energy-like invariant [J].
Das, Kinkar Ch. ;
Gutman, Ivan ;
Cevik, A. Sinan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 442 :58-68
[13]   On the sum of the Laplacian eigenvalues of a tree [J].
Fritscher, Eliseu ;
Hoppen, Carlos ;
Rocha, Israel ;
Trevisan, Vilmar .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) :371-399
[14]  
Ghorbani M, 2014, MATCH-COMMUN MATH CO, V71, P341
[15]   Laplacian energy of a graph [J].
Gutman, I ;
Zhou, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) :29-37
[16]   Threshold graphs of maximal Laplacian energy [J].
Helmberg, Christoph ;
Trevisan, Vilmar .
DISCRETE MATHEMATICS, 2015, 338 (07) :1075-1084
[17]   Complete solution to a conjecture on the maximal energy of unicyclic graphs [J].
Huo, Bofeng ;
Li, Xueliang ;
Shi, Yongtang .
EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (05) :662-673
[18]  
Ji SJ, 2013, MATCH-COMMUN MATH CO, V70, P697
[19]  
Li HH, 2014, MATCH-COMMUN MATH CO, V72, P239
[20]   ON THE LAPLACIAN ESTRADA INDEX OF A GRAPH [J].
Li, Jianxi ;
Shiu, Wai Chee ;
Chang, An .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (01) :147-156