Extremal Laplacian energy of threshold graphs

被引:2
作者
Das, Kinkar Ch. [1 ]
Mojallal, Seyed Ahmad [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
Laplacian eigenvalues; Laplacian energy; Threshold graphs; MATCHING ENERGY; RANDIC ENERGY; CONJECTURE;
D O I
10.1016/j.amc.2015.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected threshold graph of order n with in edges and trace T. In this paper we give a lower bound on Laplacian energy in terms of n, in and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. Moreover, we obtain the threshold graphs with the largest and the second largest Laplacian energies. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:267 / 280
页数:14
相关论文
共 34 条
[1]   Randic energy of specific graphs [J].
Alikhani, Saeid ;
Ghanbari, Nima .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 :722-730
[2]  
Bozkurt SB, 2014, MATCH-COMMUN MATH CO, V72, P215
[3]  
Bozkurt SB, 2013, MATCH-COMMUN MATH CO, V70, P143
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]  
Chen L, 2015, MATCH-COMMUN MATH CO, V73, P105
[6]   On Laplacian energy in terms of graph invariants [J].
Das, Kinkar Ch. ;
Mojallal, Seyed Ahmad ;
Gutman, Ivan .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :83-92
[7]  
Das KC, 2014, MATCH-COMMUN MATH CO, V72, P227
[8]   On Laplacian energy of graphs [J].
Das, Kinkar Ch. ;
Mojallal, Seyed Ahmad .
DISCRETE MATHEMATICS, 2014, 325 :52-64
[9]   On incidence energy of graphs [J].
Das, Kinkar Ch. ;
Gutman, Ivan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 :329-344
[10]  
Das KC, 2013, MATCH-COMMUN MATH CO, V70, P689