A characterization of Banach spaces with separable duals via weak statistical convergence

被引:91
作者
Connor, J [1 ]
Ganichev, M
Kadets, V
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Kharkov Natl Univ, Dept Mech & Math, UA-310077 Kharkov, Ukraine
关键词
statistical convergence; weak statistical convergence; separable duals; statistical M-basis;
D O I
10.1006/jmaa.2000.6725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B be a Banach space. A B-valued sequence (x(k)) is weakly statistically null provided lim(n) 1/n \{k less than or equal to n : \ f(x(k))\ > epsilon}\ = 0 for all epsilon > 0 and every continuous linear functional f on B. A Banach space is finite dimensional if and only if every weakly statistically null B-valued sequence has a bounded subsequence. If B is separable, B* is separable if and only if every bounded weakly statistically null B-valued sequence contains a large weakly null sequence. A characterization of spaces containing an isomorphic copy of l(1) is given, and it is also shown that l(2) has a "statistical M-basis" which is not a Schauder basis. (C) 2000 Academic Press.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 18 条
[1]   STRONG INTEGRAL SUMMABILITY AND THE STONE-CECH COMPACTIFICATION OF THE HALF-LINE [J].
CONNOR, J ;
SWARDSON, MA .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 157 (02) :201-224
[2]   MEASURES AND IDEALS OF C-ASTERISK(X) [J].
CONNOR, J ;
SWARDSON, MA .
PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS, 1993, 704 :80-91
[3]  
Connor J. S., 1990, Analysis, V10, P373, DOI DOI 10.1524/ANLY.1990.10.4.373
[4]  
Diestel J., 1995, CAMBRIDGE STUDIES AD, V43
[5]  
ERDOS P, 1989, P LOND MATH SOC, V59, P417
[6]  
Fast H., 1951, Colloq. Math, V2, P241, DOI [10.4064/cm-2-3-4-241-244, DOI 10.4064/CM-2-3-4-241-244]
[7]   DENSITIES AND SUMMABILITY [J].
FREEDMAN, AR ;
SEMBER, JJ .
PACIFIC JOURNAL OF MATHEMATICS, 1981, 95 (02) :293-305
[8]   Statistical limit superior and limit inferior [J].
Fridy, JA ;
Orhan, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (12) :3625-3631
[9]   STATISTICAL LIMIT POINTS [J].
FRIDY, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (04) :1187-1192
[10]  
Fridy JA., 1985, Analysis, V5, P301, DOI DOI 10.1524/ANLY.1985.5.4.301