Transition metal-doped tetra-MoN2 monolayers as an electrochemical catalyst for CO2 reduction: A density functional theory study

被引:6
|
作者
Yang, Xuejing [1 ]
Xu, Xuejian [1 ]
Hou, Xiuli [1 ]
Zhang, Peng [1 ,2 ,3 ]
Mi, Jianli [1 ]
Xiao, Beibei [4 ]
Huang, Jun [2 ]
Stampfl, Catherine [3 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Inst Adv Mat, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney Nano Inst, Lab Catalysis Engn, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sch Phys, Sydney Nano Inst, Sydney, NSW 2006, Australia
[4] Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会; 中国博士后科学基金;
关键词
CO2; reduction; Molybdenum nitride; Density functional theory; Electrocatalysis; MOLYBDENUM NITRIDE; MOS2; HYDROGENATION; MECHANISMS; ADSORPTION; SURFACE; WATER;
D O I
10.1016/j.catcom.2020.106212
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical reduction of CO2 on transition metal-doped Tetra-MoN2 monolayers (M/Tetra-MoN2, M = Fe, Co, Ni, Cu, Rh, Pd or Pt) has been studied based on density functional theory. It was found that the doped transition metal atom in M/Tetra-MoN2 plays an important role in the catalytic activity and reaction mechanism of CO2 reduction. Cu/Tetra-MoN2 and Pd/Tetra-MoN2 exhibited high catalytic activity, excellent methanol selectivity, and a suppressive effect for the hydrogen evolution reaction. This study not only helps to understand the mechanism of CO2 reduction, but also provides a beneficial guidance for the rational design of electrocatalysts for CO2 reduction.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2
    Liu, Zhaochun
    Zong, Xue
    Vlachos, Dionisios G.
    Filot, Ivo A. W.
    Hensen, Emiel J. M.
    CHINESE JOURNAL OF CATALYSIS, 2023, 50 : 249 - 259
  • [2] Heteroatom-Doped Transition Metal Nitrides for CO Electrochemical Reduction: A Density Functional Theory Screening Study
    Karamad, Mohammadreza
    Farimani, Amir Barati
    Magar, Rishikesh
    Siahrostami, Samira
    Gates, Ian D.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (48): : 26344 - 26351
  • [3] Enhanced CO2 reduction on transition metal-doped AlN and GaN quantum dots: A DFT study
    Wang, Zhilong
    Teleb, Nahed H.
    Sakr, Mahmoud A. S.
    Abd-Elkader, Omar H.
    Abdelsalam, Hazem
    Zhang, Qinfang
    CHEMICAL PHYSICS, 2025, 595
  • [4] Metal-doped PdH(111) Catalysts for CO2 Reduction
    Ai, Changzhi
    Vegge, Tejs
    Hansen, Heine Anton
    CHEMSUSCHEM, 2022, 15 (10)
  • [5] Density Functional Theory Study of CO2 Hydrogenation on Transition-Metal-Doped Cu(211) Surfaces
    Wang, Yushan
    Yu, Mengting
    Zhang, Xinyi
    Gao, Yujie
    Liu, Jia
    Zhang, Ximing
    Gong, Chunxiao
    Cao, Xiaoyong
    Ju, Zhaoyang
    Peng, Yongwu
    MOLECULES, 2023, 28 (06):
  • [6] Nitric oxide electrochemical reduction reaction on transition metal-doped MoSi2N4 monolayers
    Tong, Tianyue
    Linghu, Yaoyao
    Wu, Guangping
    Wang, Chao
    Wu, Chao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (31) : 18943 - 18951
  • [7] Density Functional Theory Study of CO2 Adsorption and Reduction on Stoichiometric and Doped Ceria
    Kumari, Neetu
    Haider, M. Ali
    Sinha, Nishant
    Basu, S.
    LOW-TEMPERATURE FUEL CELLS, ELECTROLYZERS, AND REDOX FLOW CELLS, 2015, 68 (03): : 155 - 166
  • [8] Transition-Metal-Doped SiP2 Monolayer for Effective CO2 Capture: A Density Functional Theory Study
    Wang, Kelvin
    Luo, Xuan
    ACS OMEGA, 2022, 7 (41): : 36848 - 36855
  • [9] Density functional theory study of CO2 capture with transition metal oxides and hydroxides
    Zhang, Bo
    Duan, Yuhua
    Johnson, Karl
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (06):
  • [10] Transition metal atom doped C2N as catalyst for the oxygen reduction reaction: A density functional theory study
    Lin, Shangyu
    Qiao, Qingan
    Chen, Xin
    Hu, Rui
    Lai, Nanjun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (51) : 27202 - 27209