Backward uniqueness for parabolic operators with variable coefficients in a half space

被引:11
作者
Wu, Jie [1 ]
Zhang, Liqun [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
关键词
Carleman estimates; backward uniqueness; Landis and Oleinik; parabolic operator; variable coefficient; CARLEMAN INEQUALITIES; CONTINUATION THEOREM; HEAT-EQUATION;
D O I
10.1142/S021919971550011X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that a function u satisfying vertical bar partial derivative(t)u+ Sigma(i,j) partial derivative(i)(a(ij)partial derivative(j)u)vertical bar <= N(vertical bar u vertical bar+vertical bar del u vertical bar), vertical bar u( x, t)vertical bar <= Ne-N| x| 2 in R-+(n) x [0, T] and u(x, 0) = 0 in R-+(n) under certain conditions on {a(ij)} must vanish identically in R-+(n) x [0, T]. The main point of the result is that the conditions imposed on {a(ij)} are of this type: {a(ij)} are Lipschitz and vertical bar del(x)a(ij) (x, t)vertical bar <= E/vertical bar x vertical bar, where E is less than a given number, and the conditions are optimal in some sense.
引用
收藏
页数:38
相关论文
共 24 条
[1]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[2]  
[Anonymous], 1963, Bull. Acad. Polonaise Sci.
[3]  
Aronszajn N., 1962, Ark. Mat., V4, P417
[4]   A strong unique continuation theorem for parabolic equations [J].
Chen, XY .
MATHEMATISCHE ANNALEN, 1998, 311 (04) :603-630
[5]  
Escauriaza L, 2006, MATH RES LETT, V13, P441
[6]   Unique continuation for parabolic operators [J].
Escauriaza, L ;
Fernández, FJ .
ARKIV FOR MATEMATIK, 2003, 41 (01) :35-60
[7]   Backward uniqueness for parabolic equations [J].
Escauriaza, L ;
Seregin, G ;
Sverak, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (02) :147-157
[8]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[9]  
Escauriaza L, 2001, INDIANA U MATH J, V50, P1149
[10]   Carleman inequalities and the heat operator [J].
Escauriaza, L .
DUKE MATHEMATICAL JOURNAL, 2000, 104 (01) :113-127