Extracellular Matrix-Based Approaches in Cardiac Regeneration: Challenges and Opportunities

被引:10
作者
Vu, Thi Van Anh [1 ]
Lorizio, Daniela [2 ]
Vuerich, Roman [1 ,3 ]
Lippi, Melania [2 ]
Nascimento, Diana S. S. [4 ,5 ,6 ]
Zacchigna, Serena [1 ,2 ,3 ]
机构
[1] Int Ctr Genet Engn & Biotechnol ICGEB, Cardiovasc Biol Lab, I-34149 Trieste, Italy
[2] Ctr Cardiol Monzino, I-20138 Milan, Italy
[3] Univ Trieste, Dept Med Surg & Hlth Sci, I-34149 Trieste, Italy
[4] Univ Porto, ICBAS Inst Ciencias Biomed Abel Salazar, P-4050313 Porto, Portugal
[5] Univ Porto, i3S Inst Invest & Inovacao Saude, P-4200135 Porto, Portugal
[6] Univ Porto, INEB Inst Nacl Engn Biomed, P-4200135 Porto, Portugal
关键词
extracellular matrix; cardiac regeneration; mechanobiology; CARDIOMYOCYTE PROLIFERATION; PROTEOMICS ANALYSIS; HEART REGENERATION; PROMOTES; REVASCULARIZATION; ANGIOGENESIS; FIBRONECTIN; RECOVERY; HYDROGEL; DISEASE;
D O I
10.3390/ijms232415783
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiac development is characterized by the active proliferation of different cardiac cell types, in particular cardiomyocytes and endothelial cells, that eventually build the beating heart. In mammals, these cells lose their regenerative potential early after birth, representing a major obstacle to our current capacity to restore the myocardial structure and function after an injury. Increasing evidence indicates that the cardiac extracellular matrix (ECM) actively regulates and orchestrates the proliferation, differentiation, and migration of cardiac cells within the heart, and that any change in either the composition of the ECM or its mechanical properties ultimately affect the behavior of these cells throughout one's life. Thus, understanding the role of ECMs' proteins and related signaling pathways on cardiac cell proliferation is essential to develop effective strategies fostering the regeneration of a damaged heart. This review provides an overview of the components of the ECM and its mechanical properties, whose function in cardiac regeneration has been elucidated, with a major focus on the strengths and weaknesses of the experimental models so far exploited to demonstrate the actual pro-regenerative capacity of the components of the ECM and to translate this knowledge into new therapies.
引用
收藏
页数:15
相关论文
共 80 条
[21]   Proteomics Analysis of Extracellular Matrix Remodeling During Zebrafish Heart Regeneration [J].
Garcia-Puig, Anna ;
Luis Mosquera, Jose ;
Jimenez-Delgado, Senda ;
Garcia-Pastor, Cristina ;
Jorba, Ignasi ;
Navajas, Daniel ;
Canals, Francesc ;
Raya, Angel .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (09) :1745-1755
[22]   VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond [J].
Giacca, M. ;
Zacchigna, S. .
GENE THERAPY, 2012, 19 (06) :622-629
[23]   Harnessing the microRNA pathway for cardiac regeneration [J].
Giacca, Mauro ;
Zacchigna, Serena .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2015, 89 :68-74
[24]  
Hernandez Melissa J, 2017, JACC Basic Transl Sci, V2, P212, DOI 10.1016/j.jacbts.2016.11.008
[25]   The zebrafish reference genome sequence and its relationship to the human genome [J].
Howe, Kerstin ;
Clark, Matthew D. ;
Torroja, Carlos F. ;
Torrance, James ;
Berthelot, Camille ;
Muffato, Matthieu ;
Collins, John E. ;
Humphray, Sean ;
McLaren, Karen ;
Matthews, Lucy ;
McLaren, Stuart ;
Sealy, Ian ;
Caccamo, Mario ;
Churcher, Carol ;
Scott, Carol ;
Barrett, Jeffrey C. ;
Koch, Romke ;
Rauch, Gerd-Joerg ;
White, Simon ;
Chow, William ;
Kilian, Britt ;
Quintais, Leonor T. ;
Guerra-Assuncao, Jose A. ;
Zhou, Yi ;
Gu, Yong ;
Yen, Jennifer ;
Vogel, Jan-Hinnerk ;
Eyre, Tina ;
Redmond, Seth ;
Banerjee, Ruby ;
Chi, Jianxiang ;
Fu, Beiyuan ;
Langley, Elizabeth ;
Maguire, Sean F. ;
Laird, Gavin K. ;
Lloyd, David ;
Kenyon, Emma ;
Donaldson, Sarah ;
Sehra, Harminder ;
Almeida-King, Jeff ;
Loveland, Jane ;
Trevanion, Stephen ;
Jones, Matt ;
Quail, Mike ;
Willey, Dave ;
Hunt, Adrienne ;
Burton, John ;
Sims, Sarah ;
McLay, Kirsten ;
Plumb, Bob .
NATURE, 2013, 496 (7446) :498-503
[26]   Angiogenesis precedes cardiomyocyte migration in regenerating mammalian hearts [J].
Ingason, Arnar B. ;
Goldstone, Andrew B. ;
Paulsen, Michael J. ;
Thakore, Akshara D. ;
Truong, Vi N. ;
Edwards, Bryan B. ;
Eskandari, Anahita ;
Bollig, Tanner ;
Steele, Amanda N. ;
Woo, Y. Joseph .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2018, 155 (03) :1118-+
[27]   Can cancer be reversed by engineering the tumor microenvironment? [J].
Ingber, Donald E. .
SEMINARS IN CANCER BIOLOGY, 2008, 18 (05) :356-364
[28]   Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation [J].
Jopling, Chris ;
Sleep, Eduard ;
Raya, Marina ;
Marti, Merce ;
Raya, Angel ;
Izpisua Belmonte, Juan Carlos .
NATURE, 2010, 464 (7288) :606-U168
[29]   Heparan Sulfate-Editing Extracellular Sulfatases Enhance VEGF Bioavailability for Ischemic Heart Repair [J].
Korf-Klingebiel, Mortimer ;
Reboll, Marc R. ;
Grote, Karsten ;
Schleiner, Hauke ;
Wang, Yong ;
Wu, Xuekun ;
Klede, Stefanie ;
Mikhed, Yuliya ;
Bauersachs, Johann ;
Klintschar, Michael ;
Rudat, Carsten ;
Kispert, Andreas ;
Niessen, Hans W. ;
Luke, Torben ;
Dierks, Thomas ;
Wollert, Kai C. .
CIRCULATION RESEARCH, 2019, 125 (09) :787-801
[30]   Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair [J].
Kuhn, Bernhard ;
del Monte, Federica ;
Hajjar, Roger J. ;
Chang, Yuh-Shin ;
Lebeche, Djamel ;
Arab, Shima ;
Keating, Mark T. .
NATURE MEDICINE, 2007, 13 (08) :962-969