Eigenvalues of limit-point Sturm-Liouville problems

被引:15
作者
Zhang, Maozhu [1 ]
Sun, Jiong [2 ]
Zettl, Anton [3 ]
机构
[1] Taishan Univ, Coll Math & Stat, Tai An 271021, Shandong, Peoples R China
[2] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[3] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
基金
中国国家自然科学基金;
关键词
Sturm-Liouville problems; Limit-point; Eigenvalue continuity and inequalities; DIFFERENTIAL-OPERATORS; REGULAR APPROXIMATION; INEQUALITIES; EXISTENCE; SPECTRUM;
D O I
10.1016/j.jmaa.2014.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dependence of the eigenvalues of self-adjoint Sturm-Liouville problems on the boundary conditions when each endpoint is regular or in the limit-circle case is now, due to some surprisingly recent results, well understood. Here we study this dependence for singular problems with one endpoint in the limit-point case. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:627 / 642
页数:16
相关论文
共 29 条
[1]  
[Anonymous], 1968, LINEAR DIFFERENTIAL
[2]  
[Anonymous], DYNAMIC SYSTEMS APPL
[3]  
[Anonymous], PANAMER MATH J
[4]  
Bailey P B., 1993, Results Math, V23, P3, DOI [DOI 10.1007/BF03323127, 10.1007/BF03323127]
[5]   Regular and singular Sturm-Liouville problems with coupled boundary conditions [J].
Bailey, PB ;
Everitt, WN ;
Zettl, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :505-514
[6]   Algorithm 810: The SLEIGN2 Sturm-Liouville code [J].
Bailey, PB ;
Everitt, WN ;
Zettl, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2001, 27 (02) :143-192
[7]  
BIRMAN MS, 1972, TOPICS MATH PHYS, V5, P19
[8]   On the existence of an eigenvalue below the essential spectrum [J].
Brown, BM ;
McCormack, DKR ;
Zettl, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986) :2229-2234
[9]   On a computer assisted proof of the existence of eigenvalues below the essential spectrum of the Sturm-Liouville problem [J].
Brown, BM ;
McCormack, DKR ;
Zettl, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) :385-393
[10]   Inequalities among eigenvalues of Sturm-Liouville problems [J].
Eastham, MSP ;
Kong, Q ;
Wu, H ;
Zettl, A .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 3 (01) :25-43