FGATR-Net: Automatic Network Architecture Design for Fine-Grained Aircraft Type Recognition in Remote Sensing Images

被引:9
作者
Liang, Wei [1 ,2 ,3 ,4 ]
Li, Jihao [1 ,2 ,3 ,4 ]
Diao, Wenhui [1 ,2 ]
Sun, Xian [1 ,2 ,3 ,4 ]
Fu, Kun [1 ,2 ,3 ,4 ]
Wu, Yirong [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing images; fine-grained aircraft type recognition; deep learning; Neural Architecture Search (NAS); differentiable search;
D O I
10.3390/rs12244187
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fine-grained aircraft type recognition in remote sensing images, aiming to distinguish different types of the same parent category aircraft, is quite a significant task. In recent decades, with the development of deep learning, the solution scheme for this problem has shifted from handcrafted feature design to model architecture design. Although a great progress has been achieved, this paradigm generally needs strong expert knowledge and rich expert experience. It is still an extremely laborious work and the automation level is relatively low. In this paper, inspired by Neural Architecture Search (NAS), we explore a novel differentiable automatic architecture design framework for fine-grained aircraft type recognition in remote sensing images. In our framework, the search process is divided into several phases. Network architecture deepens at each phase while the number of candidate functions gradually decreases. To achieve it, we adopt different pruning strategies. Then, the network architecture is determined through a potentiality judgment after an architecture heating process. This approach can not only search deeper network, but also reduce the computational complexity, especially for relatively large size of remote sensing images. When all differentiable search phases are finished, the searched model called Fine-Grained Aircraft Type Recognition Net (FGATR-Net) is obtained. Compared with previous NAS, ours are more suitable for relatively large and complex remote sensing images. Experiments on Multitype Aircraft Remote Sensing Images (MTARSI) and Aircraft17 validate that FGATR-Net possesses a strong capability of feature extraction and feature representation. Besides, it is also compact enough, i.e., parameter quantity is relatively small. This powerfully indicates the feasibility and effectiveness of the proposed automatic network architecture design method.
引用
收藏
页码:1 / 17
页数:17
相关论文
empty
未找到相关数据