Bending-wave instability of a vortex ring in a trapped Bose-Einstein condensate

被引:41
作者
Horng, T. -L. [1 ]
Gou, S. -C.
Lin, T. -C.
机构
[1] Feng Chia Univ, Dept Appl Math, Taichung 40074, Taiwan
[2] Natl Changhua Univ Educ, Dept Phys, Changhua 50058, Taiwan
[3] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 04期
关键词
19;
D O I
10.1103/PhysRevA.74.041603
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using a velocity formula derived by matched asymptotic expansion, we study the dynamics of a vortex ring in an axisymmetric Bose-Einstein condensate in the Thomas-Fermi limit. The trajectory for an axisymmetrically placed and oriented vortex ring shows that it generally precesses in a condensate. The linear instability due to bending waves is investigated both numerically and analytically. General stability boundaries for various perturbed wave numbers are computed. Our analysis suggests that a slightly oblate trap is needed to prevent the vortex ring from becoming unstable.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Watching dark solitons decay into vortex rings in a Bose-Einstein condensate [J].
Anderson, BP ;
Haljan, PC ;
Regal, CA ;
Feder, DL ;
Collins, LA ;
Clark, CW ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :2926-2929
[2]  
Donnelly R. J., 1991, QUANTIZED VORTICES H, V2
[3]   Dark-soliton states of Bose-Einstein condensates in anisotropic traps [J].
Feder, DL ;
Pindzola, MS ;
Collins, LA ;
Schneider, BI ;
Clark, CW .
PHYSICAL REVIEW A, 2000, 62 (05) :053606-053601
[4]  
Gradshteyn I.S., 1994, Tables of Integrals, Series, and Products
[5]   Generating vortex rings in Bose-Einstein condensates in the line-source approximation [J].
Guilleumas, M ;
Jezek, DM ;
Mayol, R ;
Pi, M ;
Barranco, M .
PHYSICAL REVIEW A, 2002, 65 (05) :536091-536097
[6]   Vortex rings and mutual drag in trapped Bose-Einstein condensates [J].
Jackson, B ;
McCann, JF ;
Adams, CS .
PHYSICAL REVIEW A, 1999, 60 (06) :4882-4885
[7]  
Jackson B., 1999, Phys. Rev. A, V61, DOI [10.1103/PhysRevA.61.013604, DOI 10.1103/PHYSREVA.61.013604]
[8]   Vortex formation in a stirred Bose-Einstein condensate [J].
Madison, KW ;
Chevy, F ;
Wohlleben, W ;
Dalibard, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :806-809
[9]  
Marshall JS, 2001, Inviscid Incompressible Flow
[10]   Vortices in a Bose-Einstein condensate [J].
Matthews, MR ;
Anderson, BP ;
Haljan, PC ;
Hall, DS ;
Wieman, CE ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 1999, 83 (13) :2498-2501