Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis

被引:35
作者
Kim, Juhyun [1 ]
Salvador, Manuel [1 ]
Saunders, Elizabeth [1 ]
Gonzalez, Jaime [1 ]
Avignone-Rossa, Claudio [1 ]
Jimenez, Jose Ignacio [1 ]
机构
[1] Univ Surrey, Fac Hlth & Med Sci, Guildford GU2 7XH, Surrey, England
来源
SYNTHETIC BIOLOGY-BOOK | 2016年 / 60卷 / 04期
基金
英国生物技术与生命科学研究理事会;
关键词
PSEUDOMONAS-PUTIDA KT2440; NATURAL-PRODUCT BIOSYNTHESIS; GENOME-SCALE MODELS; ESCHERICHIA-COLI; SYSTEMS BIOLOGY; OVERFLOW METABOLISM; ENTNER-DOUDOROFF; SOIL BACTERIUM; TOLERANCE; RECONSTRUCTION;
D O I
10.1042/EBC20160015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The chassis is the cellular host used as a recipient of engineered biological systems in synthetic biology. They are required to propagate the genetic information and to express the genes encoded in it. Despite being an essential element for the appropriate function of genetic circuits, the chassis is rarely considered in their design phase. Consequently, the circuits are transferred to model organisms commonly used in the laboratory, such as Escherichia coli, that may be suboptimal for a required function. In this review, we discuss some of the properties desirable in a versatile chassis and summarize some examples of alternative hosts for synthetic biology amenable for engineering. These properties include a suitable life style, a robust cell wall, good knowledge of its regulatory network as well as of the interplay of the host components with the exogenous circuits, and the possibility of developing whole-cell models and tuneable metabolic fluxes that could allow a better distribution of cellular resources (metabolites, ATP, nucleotides, amino acids, transcriptional and translational machinery). We highlight Pseudomonas putida, widely used in many different biotechnological applications as a prominent organism for synthetic biology due to its metabolic diversity, robustness and ease of manipulation.
引用
收藏
页码:303 / 313
页数:11
相关论文
共 75 条
[1]   Recent progress in therapeutic natural product biosynthesis using Escherichia coli [J].
Ahmadi, Mahmoud Kamal ;
Pfeifer, Blaine A. .
CURRENT OPINION IN BIOTECHNOLOGY, 2016, 42 :7-12
[2]   Recombinant protein production and streptomycetes [J].
Anne, Jozef ;
Maldonado, Barbara ;
Van Impe, Jan ;
Van Mellaert, Lieve ;
Bernaerts, Kristel .
JOURNAL OF BIOTECHNOLOGY, 2012, 158 (04) :159-167
[3]  
[Anonymous], 2016, ENV MICROBIOL
[4]   Sugar Synthesis from CO2 in Escherichia coli [J].
Antonovsky, Niv ;
Gleizer, Shmuel ;
Noor, Elad ;
Zohar, Yehudit ;
Herz, Elad ;
Barenholz, Uri ;
Zelcbuch, Lior ;
Amram, Shira ;
Wides, Aryeh ;
Tepper, Naama ;
Davidi, Dan ;
Bar-On, Yinon ;
Bareia, Tasneem ;
Wernick, David G. ;
Shani, Ido ;
Malitsky, Sergey ;
Jona, Ghil ;
Bar-Even, Arren ;
Milo, Ron .
CELL, 2016, 166 (01) :115-125
[5]   Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes [J].
Benedetti, Ilaria ;
de Lorenzo, Victor ;
Nikel, Pablo I. .
METABOLIC ENGINEERING, 2016, 33 :109-118
[6]   Technology development for natural product biosynthesis in Saccharomyces cerevisiae [J].
Billingsley, John M. ;
DeNicola, Anthony B. ;
Tang, Yi .
CURRENT OPINION IN BIOTECHNOLOGY, 2016, 42 :74-83
[7]   Contextualizing context for synthetic biology - identifying causes of failure of synthetic biological systems [J].
Cardinale, Stefano ;
Arkin, Adam Paul .
BIOTECHNOLOGY JOURNAL, 2012, 7 (07) :856-866
[8]  
Ceroni F, 2015, NAT METHODS, V12, P415, DOI [10.1038/NMETH.3339, 10.1038/nmeth.3339]
[9]   The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress [J].
Chavarria, Max ;
Nikel, Pablo I. ;
Perez-Pantoja, Danilo ;
Lorenzo, Victor .
ENVIRONMENTAL MICROBIOLOGY, 2013, 15 (06) :1772-1785
[10]   Engineering the Soil Bacterium Pseudomonas putida for Arsenic Methylation [J].
Chen, Jian ;
Qin, Jie ;
Zhu, Yong-Guan ;
de Lorenzo, Victor ;
Rosen, Barry P. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (14) :4493-4495