Bifurcation analysis in a discrete differential-algebraic predator-prey system

被引:28
作者
Zhang, Guodong [1 ,2 ]
Shen, Yi [1 ,2 ]
Chen, Boshan [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Key Lab Minist Educ Image Proc & Intelligent Cont, Wuhan 430074, Peoples R China
[3] Hubei Normal Univ, Coll Math & Stat, Huangshi 435002, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Bifurcation; Stability; Chaos; Discrete differential-algebraic system; Predator-prey; STAGE-STRUCTURE; MODEL; BEHAVIOR;
D O I
10.1016/j.apm.2014.03.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The discrete-time predator-prey biological economic system obtained by Euler method is investigated. Some conditions for the system to undergo flip bifurcation and Neimark-Sacker bifurcation are derived by using new normal form of differential-algebraic system, center mainfold theorem and bifurcation theory. Numerical simulations are given to show the effectiveness of our results and also to exhibit period-doubling bifurcation in orbits of period 2, 4, 8 and chaotic sets. The results obtained here reveal far richer dynamics in discrete differential-algebraic biological economic system. The contents are interesting in mathematics and biology. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:4835 / 4848
页数:14
相关论文
共 27 条
[1]   Chaotic dynamics of a discrete prey-predator model with Holling type II [J].
Agiza, H. N. ;
ELabbasy, E. M. ;
EL-Metwally, H. ;
Elsadany, A. A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :116-129
[2]   Average growth and extinction in a competitive Lotka-Volterra system [J].
Ahmad, S ;
Lazer, AC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (03) :545-557
[3]  
[Anonymous], 2012, Applications of centre manifold theory
[4]   Optimal harvesting of diffusive models in a nonhomogeneous environment [J].
Braverman, Elena ;
Braverman, Leonid .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E2173-E2181
[5]  
Chen B., 2000, ACTA MATH APPL SIN-E, V23, P429
[6]   On a Leslie-Gower predator-prey model incorporating a prey refuge [J].
Chen, Fengde ;
Chen, Liujuan ;
Xie, Xiangdong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :2905-2908
[7]   Dynamic complexities in a single-species discrete population model with stage structure and birth pulses [J].
Gao, SJ ;
Chen, LS .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :519-527
[8]  
Gopalsamy K., 2013, STABILITY OSCILLATIO, V74
[9]   THE ECONOMIC THEORY OF A COMMON-PROPERTY RESOURCE: THE FISHERY [J].
Gordon, H. Scott .
JOURNAL OF POLITICAL ECONOMY, 1954, 62 (02) :124-142
[10]  
Gukenheimer J., 1983, NONLINEAR OSCILLATIO