Analysis of Multilinear Subspaces Based on Geodesic Distance

被引:2
作者
Itoh, Hayato [1 ,2 ]
Imiya, Atsushi [3 ]
Sakai, Tomoya [4 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi, Japan
[2] Chiba Univ, Grad Sch Adv Integrat Sci, Chiba, Japan
[3] Chiba Univ, Inst Management & Informat Technol, Chiba, Japan
[4] Nagasaki Univ, Grad Sch Engn, Nagasaki, Japan
来源
COMPUTER ANALYSIS OF IMAGES AND PATTERNS | 2017年 / 10424卷
关键词
GRASSMANN MANIFOLDS; GEOMETRY; ALGORITHMS; ANGLES; MODELS;
D O I
10.1007/978-3-319-64689-3_31
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Tensor principal component analysis enables the efficient analysis of spatial textures of volumetric images and spatio-temporal changes of volumetric video sequences. To extend the subspace methods for analysis of linear subspaces, we are required to quantitatively evaluate the differences between multilinear subspaces. This discrimination of multilinear subspaces is achieved by computing the geodesic distance between tensor subspaces.
引用
收藏
页码:384 / 396
页数:13
相关论文
共 12 条
  • [1] Riemannian geometry of Grassmann manifolds with a view on algorithmic computation
    Absil, PA
    Mahony, R
    Sepulchre, R
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (02) : 199 - 220
  • [2] Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI
    Andreopoulos, Alexander
    Tsotsos, John K.
    [J]. MEDICAL IMAGE ANALYSIS, 2008, 12 (03) : 335 - 357
  • [3] Cichoki A., 2009, Non-negative matrix and tensor factorizations
  • [4] Subspace angles between ARMA models
    De Cock, K
    De Moor, B
    [J]. SYSTEMS & CONTROL LETTERS, 2002, 46 (04) : 265 - 270
  • [5] On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors
    De Lathauwer, L
    De Moor, B
    Vandewalle, J
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1324 - 1342
  • [6] The geometry of algorithms with orthogonality constraints
    Edelman, A
    Arias, TA
    Smith, ST
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) : 303 - 353
  • [7] Hamm J., 2008, P 25 INT C MACH LEAR, P376, DOI [10.1145/1390156.1390204, DOI 10.1145/1390156.1390204]
  • [8] Approximation of N-Way Principal Component Analysis for Organ Data
    Itoh, Hayato
    Imiya, Atsushi
    Sakai, Tomoya
    [J]. COMPUTER VISION - ACCV 2016 WORKSHOPS, PT III, 2017, 10118 : 16 - 31
  • [9] Principal angles between subspaces in an A-based scalar product:: Algorithms and perturbation estimates
    Knyazev, AV
    Argentati, ME
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) : 2008 - 2040
  • [10] MPCA: Multilinear principal component analysis of tensor objects
    Lu, Haiping
    Konstantinos, N. Platardotis
    Venetsanopoulos, Anastasios N.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (01): : 18 - 39